Artificial intelligence for detecting superficial esophageal squamous cell carcinoma under multiple endoscopic imaging modalities: A multicenter study

医学 食管鳞状细胞癌 模式 放射科 食管癌 人工智能 癌症 病理 内科学 计算机科学 社会科学 社会学
作者
Xianglei Yuan,Linjie Guo,Wei Liu,Xianhui Zeng,Yi Mou,Shuai Bai,Zhenguo Pan,Tao Zhang,Wenfeng Pu,Chunyi Wen,Jun Wang,Zheng‐Duan Zhou,Jing Feng,Bing Hu
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:37 (1): 169-178 被引量:18
标识
DOI:10.1111/jgh.15689
摘要

Diagnosis of esophageal squamous cell carcinoma (ESCC) is complicated and requires substantial expertise and experience. This study aimed to develop an artificial intelligence (AI) system for detecting superficial ESCC under multiple endoscopic imaging modalities.Endoscopic images were retrospectively collected from West China Hospital, Sichuan University as a training dataset and an independent internal validation dataset. Images from other four hospitals were used as an external validation dataset. The AI system was compared with 11 experienced endoscopists. Furthermore, videos were collected to assess the performance of the AI system.A total of 53 933 images from 2621 patients and 142 videos from 19 patients were used to develop and validate the AI system. In the internal and external validation datasets, the performance of the AI system under all or different endoscopic imaging modalities was satisfactory, with sensitivity of 92.5-99.7%, specificity of 78.5-89.0%, and area under the receiver operating characteristic curves of 0.906-0.989. The AI system achieved comparable performance with experienced endoscopists. Regarding superficial ESCC confined to the epithelium, the AI system was more sensitive than experienced endoscopists on white-light imaging (90.8% vs 82.5%, P = 0.022). Moreover, the AI system exhibited good performance in videos, with sensitivity of 89.5-100% and specificity of 73.7-89.5%.We developed an AI system that showed comparable performance with experienced endoscopists in detecting superficial ESCC under multiple endoscopic imaging modalities and might provide valuable support for inexperienced endoscopists, despite requiring further evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助乖7采纳,获得10
3秒前
kiwi完成签到,获得积分10
3秒前
4秒前
xiaohe完成签到,获得积分10
4秒前
4秒前
www完成签到,获得积分10
5秒前
乐怡日尧完成签到,获得积分10
5秒前
6秒前
kiwi发布了新的文献求助10
7秒前
1212431发布了新的文献求助10
10秒前
樱桃超级大丸子完成签到,获得积分10
14秒前
14秒前
英姑应助Guoqiang采纳,获得10
18秒前
18秒前
苹果千柔发布了新的文献求助10
21秒前
李健的小迷弟应助lin采纳,获得10
22秒前
23秒前
洁净之柔发布了新的文献求助10
23秒前
chenhui发布了新的文献求助10
23秒前
achaia完成签到,获得积分10
26秒前
传奇3应助狂飙的小蜗牛采纳,获得30
27秒前
27秒前
科研通AI2S应助ZHANG123采纳,获得10
27秒前
29秒前
笙声发布了新的文献求助30
32秒前
32秒前
苹果千柔完成签到,获得积分20
33秒前
lin发布了新的文献求助10
35秒前
jiahao完成签到,获得积分10
38秒前
xyx完成签到,获得积分10
40秒前
斯文败类应助学术白菜采纳,获得10
43秒前
洁净之柔完成签到,获得积分10
43秒前
45秒前
岳莹晓完成签到 ,获得积分10
46秒前
丁丁完成签到,获得积分20
48秒前
49秒前
Guoqiang发布了新的文献求助10
49秒前
酷波er应助乐观的镜子采纳,获得10
54秒前
caohuijun发布了新的文献求助10
54秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844