Deep convolutional neural networks for onychomycosis detection using microscopic images with KOH examination

卷积神经网络 氢氧化钾 化学 核医学 医学 人工智能 计算机科学 有机化学
作者
Abdurrahim Yılmaz,Fatih Göktay,Rahmetullah Varol,Gülsüm Gençoğlan,Hüseyin Üvet
出处
期刊:Mycoses [Wiley]
卷期号:65 (12): 1119-1126 被引量:15
标识
DOI:10.1111/myc.13498
摘要

The diagnosis of superficial fungal infections is still mostly based on direct microscopic examination with potassium hydroxide solution. However, this method can be time consuming, and its diagnostic accuracy rates vary widely depending on the clinician's experience.This study presents a deep neural network structure that enables the rapid solutions for these problems and can perform automatic fungi detection in grayscale images without dyes.One hundred sixty microscopic full field photographs containing the fungal element, obtained from patients with onychomycosis, and 297 microscopic full field photographs containing dissolved keratin obtained from normal nails were collected. Smaller patches containing fungi (n = 1835) and keratin (n = 5238) were extracted from these full field images. In order to detect fungus and keratin, VGG16 and InceptionV3 models were developed by the use of these patches. The diagnostic performance of models was compared with 16 dermatologists by using 200 test patches.For the VGG16 model, the InceptionV3 model and 16 dermatologists, mean accuracy rates were 88.10 ± 0.8%, 88.78 ± 0.35% and 74.53 ± 8.57%, respectively; mean sensitivity rates were 75.04 ± 2.73%, 74.93 ± 4.52% and 74.81 ± 19.51%, respectively; and mean specificity rates were 92.67 ± 1.17%, 93.78 ± 1.74% and 74.25 ± 18.03%, respectively. The models were statistically superior to dermatologists according to rates of accuracy and specificity but not to sensitivity (p < .0001, p < .005 and p > .05, respectively). Area under curve values of the VGG16 and InceptionV3 models were 0.9339 and 0.9292, respectively.Our research demonstrates that it is possible to build an automated system capable of detecting fungi present in microscopic images employing the proposed deep learning models. It has great potential for fungal detection applications based on AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率书本完成签到,获得积分10
刚刚
刚刚
2秒前
2秒前
马家辉完成签到,获得积分10
4秒前
caohuijun完成签到,获得积分10
4秒前
jenningseastera应助shuicaoxi采纳,获得10
6秒前
冰魂应助shuicaoxi采纳,获得10
6秒前
jenningseastera应助shuicaoxi采纳,获得10
6秒前
tamo完成签到,获得积分10
6秒前
7秒前
caohuijun发布了新的文献求助10
7秒前
9秒前
10秒前
xiaoxiao完成签到,获得积分20
11秒前
饱满的小懒猪完成签到,获得积分20
12秒前
grzzz发布了新的文献求助10
12秒前
zhangshaoqi完成签到,获得积分10
13秒前
13秒前
xiaoxiao发布了新的文献求助10
14秒前
科研通AI2S应助mujin采纳,获得10
15秒前
付冀川发布了新的文献求助10
15秒前
17秒前
冰魂应助冷风寒采纳,获得10
18秒前
KevinDante发布了新的文献求助10
18秒前
aLi完成签到,获得积分10
20秒前
付冀川完成签到,获得积分10
22秒前
23秒前
开放宛儿发布了新的文献求助10
23秒前
机灵雨发布了新的文献求助10
28秒前
adobe完成签到,获得积分10
28秒前
linjiaxin完成签到,获得积分10
31秒前
bkagyin应助机灵雨采纳,获得10
36秒前
KevinDante完成签到,获得积分10
37秒前
jenningseastera应助caohuijun采纳,获得10
38秒前
盼盼完成签到 ,获得积分10
39秒前
冰魂应助冷风寒采纳,获得10
39秒前
39秒前
40秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782142
求助须知:如何正确求助?哪些是违规求助? 3327581
关于积分的说明 10232377
捐赠科研通 3042529
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758842