亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance of deep learning in mapping water quality of Lake Simcoe with long-term Landsat archive

遥感 水质 人工神经网络 计算机科学 环境科学 人工智能 回归 数学 统计 生态学 地理 生物
作者
Hongwei Guo,Shang Tian,Jinhui Jeanne Huang‬‬‬‬,Xiaotong Zhu,Bo Wang,Zijie Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:183: 451-469 被引量:53
标识
DOI:10.1016/j.isprsjprs.2021.11.023
摘要

Remote sensing provides full-coverage and dynamic water quality monitoring with high efficiency and low consumption. Deep learning (DL) has been progressively used in water quality retrieval because it efficiently captures the potential relationship between target variables and imagery. In this study, the multimodal deep learning (MDL) models were developed and rigorously validated using atmospherically corrected Landsat remote sensing reflectance data and synchronous water quality measurements for estimating long-term Chlorophyll-a (Chl-a), total phosphorus (TP), and total nitrogen (TN) in Lake Simcoe, Canada. Since TP and TN are non-optically active, their retrievals were based on the fact that they are closely related to the optically active constituents (OACs) such as Chl-a. We trained the MDL models with one in-situ measured data set (for Chl-a, N = 315, for TP and TN, N = 303), validated the models with two independent data sets (N = 147), and compared the model performances with several DL, machine learning, and empirical algorithms. The results indicated that the MDL models adequately estimated Chl-a (mean absolute error (MAE) = 32.57%, Bias = 10.61%), TP (MAE = 42.58%, Bias = −2.82%), and TN (MAE = 35.05%, Bias = 13.66%), and outperformed several other candidate algorithms, namely the progressively decreasing deep neural network (DNN), a DNN with trainable parameters similar to MDL but without splitting input features, the eXtreme Gradient Boosting, the support vector regression, the NASA Ocean Color two-band and three-band ratio algorithms, and another empirical algorithm of Landsat data in clear lakes. Using the MDL models, we reconstructed the historical spatiotemporal patterns of Chl-a, TP, and TN in Lake Simcoe since 1984, and investigated the effects of two water quality improvement programs. In addition, the physical mechanism and interpretability of the MDL models were explored by quantifying the contribution of each feature to the model outputs. The framework proposed in this study provides a practical method for long-term Chl-a, TP, and TN estimation at the regional scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抠鼻公主完成签到 ,获得积分10
8秒前
余一台完成签到,获得积分10
14秒前
tao发布了新的文献求助10
16秒前
局内人发布了新的文献求助10
20秒前
无花果应助tao采纳,获得10
22秒前
24秒前
小蘑菇应助局内人采纳,获得10
27秒前
59秒前
1分钟前
断罪残影发布了新的文献求助10
1分钟前
Laihh513完成签到,获得积分10
1分钟前
1分钟前
1分钟前
爱听歌的丹琴完成签到,获得积分10
1分钟前
1分钟前
初七完成签到,获得积分20
1分钟前
老芋头完成签到,获得积分10
1分钟前
小二郎应助余婧采纳,获得20
2分钟前
欢呼宛秋完成签到 ,获得积分10
2分钟前
杨涵完成签到 ,获得积分10
2分钟前
ED应助初七采纳,获得10
2分钟前
包容新蕾完成签到 ,获得积分10
2分钟前
znn完成签到 ,获得积分10
2分钟前
盐焗小星球完成签到,获得积分10
3分钟前
lalala完成签到,获得积分10
3分钟前
田様应助依古比古采纳,获得10
3分钟前
3分钟前
依古比古发布了新的文献求助10
3分钟前
WebCasa应助科研通管家采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
润泽完成签到,获得积分20
3分钟前
云朵发布了新的文献求助10
3分钟前
3分钟前
3分钟前
缺心眼发布了新的文献求助10
4分钟前
云朵完成签到,获得积分20
4分钟前
英姑应助缺心眼采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130414
求助须知:如何正确求助?哪些是违规求助? 3667328
关于积分的说明 11600744
捐赠科研通 3365539
什么是DOI,文献DOI怎么找? 1849091
邀请新用户注册赠送积分活动 912871
科研通“疑难数据库(出版商)”最低求助积分说明 828355