Temporal prediction of algal parameters in Three Gorges Reservoir based on highly time-resolved monitoring and long short-term memory network

水华 三峡 计算机科学 背景(考古学) 布鲁姆 稳健性(进化) 环境科学 水质 深度学习 支流 人工智能 生态学 浮游植物 地图学 工程类 古生物学 生物化学 岩土工程 营养物 基因 生物 地理
作者
Kun Shan,Tian Ouyang,Xiaoxiao Wang,Hong Yang,Botian Zhou,Zhongxing Wu,Mingsheng Shang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:605: 127304-127304 被引量:35
标识
DOI:10.1016/j.jhydrol.2021.127304
摘要

Many dammed rivers throughout the world have experienced frequent harmful algal blooms (HABs) in the context of climate change and anthropogenic activities. Accurate forecasting of algal parameters (i.e., algal cell density and microcystin concentration) has great practical significance for taking precautions against HABs risks. Long short-term memory (LSTM) networks have recently shown potential in predicting water quality parameters. However, there is still little known about the robustness of the LSTM in forecasting highly time-resolved measurement of algal parameters. This study developed a hybrid deep-learning architecture (XG-LSTM) composed of one XGBoost module and two parallel LSTM models to predict algal cell density and microcystin concentration in the Three Gorges Reservoir (TGR). The proposed model was validated by in situ multi-sensor-system monitoring data at four bloom-impacted tributaries in the TGR. Each modelling process utilized the antecedent information of the algal parameters and the corresponding environmental variables as inputs for forecasting the algal parameters for the coming hours and days. As expected, the presented model achieved better performance than those without special feature extraction procedures, providing that the use of selected environmental parameters can improve LSTM performance. In addition, the hybrid XG-LSTM model successfully captured the time-series patterns of both algal cell density and microcystin concentration compared with other data-driven models, further suggesting the reliable utilization of this model in early warnings of bloom toxicity. Thus, the results presented demonstrate the potential of deep learning technology for real-time prediction of algal parameters in the TGR, and possibly for rapid detection of developing HABs in other aquatic ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxpxp完成签到,获得积分10
刚刚
bao完成签到 ,获得积分10
刚刚
happening完成签到,获得积分10
1秒前
blackhawkwu发布了新的文献求助30
1秒前
2秒前
汉堡包发布了新的文献求助10
2秒前
孟一完成签到,获得积分10
2秒前
3秒前
花花发布了新的文献求助10
3秒前
4秒前
4秒前
自由寄柔发布了新的文献求助10
4秒前
KD完成签到,获得积分10
6秒前
SYozi完成签到,获得积分20
6秒前
华仔应助flyingpig采纳,获得10
6秒前
sunsaint完成签到,获得积分10
6秒前
Jasper应助倩Q采纳,获得10
7秒前
好蓝发布了新的文献求助10
7秒前
清风发布了新的文献求助10
7秒前
7秒前
研友_ZragOn发布了新的文献求助10
8秒前
8秒前
wwz应助汉堡包采纳,获得10
8秒前
8秒前
搜集达人应助汉堡包采纳,获得10
8秒前
张俊腾发布了新的文献求助10
8秒前
随机数学完成签到,获得积分10
9秒前
情怀应助山大琦子采纳,获得10
9秒前
10秒前
Leon完成签到,获得积分10
10秒前
happening发布了新的文献求助10
10秒前
赘婿应助立刻睡大觉采纳,获得10
10秒前
10秒前
11秒前
11秒前
鱼王完成签到,获得积分20
11秒前
11秒前
12秒前
尉迟希望应助LLLLLL采纳,获得10
12秒前
chy完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261911
求助须知:如何正确求助?哪些是违规求助? 4423050
关于积分的说明 13768354
捐赠科研通 4297554
什么是DOI,文献DOI怎么找? 2358051
邀请新用户注册赠送积分活动 1354404
关于科研通互助平台的介绍 1315457