Dual-Engineering of Ammonium Vanadate for Enhanced Aqueous and Quasi-Solid-State Zinc Ion Batteries

钒酸盐 水溶液 离子 材料科学 固态 无机化学 核化学 化学 冶金 有机化学 物理化学
作者
Yu Zheng,Chengxiang Tian,Yitian Wu,Lanze Li,Yingjie Tao,Lulu Liang,Guanghe Yu,Sai Wu,Fan Wang,Yajun Pang,Zhenghui Pan,Zhehong Shen,Hao Chen
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:9
标识
DOI:10.2139/ssrn.4093944
摘要

Ammonium vanadate holds promise for the high-performance cathode in aqueous zinc ion batteries (ZIBs) due to its stable layered structure and superior theoretical capacity. However, excessive ammonium cations occupying the interlayer and too strong electrostatic interaction between Zn 2+ and defect-free V-O bonds largely hinder the capacity and rate performance of ammonium vanadate in ZIBs. Here, in this work, a dual-engineering method that integrates the removal of partial ammonium cations and the increase of oxygen vacancies has been proposed to boost the performance of NH 4 V 4 O 10 (NVO). Experimental evidence and theoretical calculations demonstrate that this method can ensure an enlarged room for the (de)intercalation of more Zn 2+ ions and weaken the strong electrostatic interaction between the V-O layer and Zn 2+ to reduce the energy barrier of the Zn 2+ diffusion process. As a consequence, the specific capacity of the as-obtained NVO with the above dual characteristic (NVO-300) was enhanced from 304 mAh g −1 to 355 mAh g −1 , relative to the NVO without dual characteristic. And the rate capability of NVO-300 has a more than 300% increase relative to NVO. Furthermore, benefiting from the superior performance and self-supporting feature of this NVO-300, a quasi-solid-state ZIB based on NVO-300 displays a satisfactory specific capacity of 307 mAh g −1 at 0.5 A g −1 and a high energy density of 214 Wh kg −1 at 345 W kg −1 , demonstrative of its great usage potential as a practical portable energy storage device.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yejian发布了新的文献求助10
1秒前
苗条小霸王完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
半生完成签到 ,获得积分10
3秒前
FashionBoy应助liuzhanyu采纳,获得10
3秒前
香蕉觅云应助00采纳,获得10
4秒前
zombleq发布了新的文献求助10
4秒前
4秒前
糊涂的友安完成签到 ,获得积分20
5秒前
Akim应助游园惊梦采纳,获得10
6秒前
6秒前
火星上的小笼包完成签到,获得积分10
7秒前
7秒前
大头牌金枪鱼完成签到,获得积分10
7秒前
lixm发布了新的文献求助10
8秒前
8秒前
vv发布了新的文献求助10
8秒前
Marcus完成签到,获得积分10
10秒前
天天快乐应助清风采纳,获得10
10秒前
10秒前
11秒前
受伤的似狮完成签到 ,获得积分10
12秒前
王ccccc完成签到,获得积分10
12秒前
忍冬半夏完成签到,获得积分10
12秒前
一玥发布了新的文献求助10
12秒前
常丽芳发布了新的文献求助10
12秒前
yyyfff应助勤劳傲安采纳,获得10
13秒前
科研通AI5应助DWJIANG采纳,获得10
13秒前
14秒前
liuzhanyu发布了新的文献求助10
15秒前
Xun发布了新的文献求助10
15秒前
懦弱的含芙给懦弱的含芙的求助进行了留言
16秒前
万能图书馆应助fzzf采纳,获得10
16秒前
Lina HE完成签到 ,获得积分10
16秒前
00发布了新的文献求助10
17秒前
Starlight完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182327
求助须知:如何正确求助?哪些是违规求助? 4368980
关于积分的说明 13604725
捐赠科研通 4220489
什么是DOI,文献DOI怎么找? 2314726
邀请新用户注册赠送积分活动 1313449
关于科研通互助平台的介绍 1262141