亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gls Inhibitor CB-839 Modulates Cellular Metabolism in AML and Potently Suppresses AML Cell Growth When Combined with 5-Azacitidine

细胞内 谷氨酰胺 细胞生长 细胞外 生物化学 化学 新陈代谢 谷氨酰胺酶 生物 细胞生物学 氨基酸
作者
Tianyu Cai,Philip L. Lorenzi,Dinesh Rakheja,Michael A. Pontikos,Alessia Lodi,Lina Han,Qi Zhang,Helen Ma,Mohamed Rahmani,Tushar D. Bhagat,Thomas D. Horvath,Courtney D. DiNardo,Steven Grant,Stefano Tiziani,Amit Verma,Marina Konopleva
出处
期刊:Blood [Elsevier BV]
卷期号:128 (22): 4064-4064 被引量:11
标识
DOI:10.1182/blood.v128.22.4064.4064
摘要

Abstract Glutamine (Gln) is required for growth and proliferation of several tumor types including AML. Glutaminase (GLS) is a mitochondrial enzyme that catalyzes conversion of Gln to glutamate (Glu), which provides carbons for the TCA cycle and regulates redox homeostasis through production of glutathione and NADH. CB-839 is a highly selective, reversible, allosteric inhibitor of GLS. In this study we studied metabolic and cellular consequences of GLS inhibition in AML cells cultured in normoxic or hypoxic conditions. First, we performed metabolomic analysis of HL-60 cells co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSCs). Consistent with the known mechanism of GLS inhibition, CB-839 caused a rapid and extensive decrease in intracellular Glu in both HL60 and MSC and a corresponding increase in intracellular Gln in both cell types. Unexpectedly, CB-839-treated cells exhibited a rapid increase in intracellular and extracellular concentrations of multiple amino acids (Phe, kynurenine, Trp, Leu, Ile, Met, Tyr, Val, Thr, Ala, Gln, Asn, and His), possibly reflecting inhibition of global protein synthesis. CB-839 suppressed cysteine consumption from the extracellular compartment and caused rapid increase in intracellular taurine in HL-60 cells, suggesting altered redox homeostasis (Fig. 1A). CB-839 inhibited cellular growth of HL-60 and MV4;11 AML cells cultured alone or co-cultured with MSC, under conditions mimicking the BM microenvironment (Fig. 1B). Stable isotope-resolved metabolomics (SIRM) analysis with 13C5, 15N2-Gln in HL-60 cells indicated that treatment with CB-839 severely hindered Gln anaplerosis to similar extent under normoxic or hypoxic conditions. Moreover, Gln is predominantly used to carry out oxidative metabolism. The enriched fraction of aspartate in treated cells dropped dramatically (to approximately 20% or less of the pool), suggesting that leukemia cells require Krebs cycle-derived oxaloacetate transamination for the generation of aspartate (Fig. 1C). Limiting Gln supply using CB-839 caused reduction in the concentration of alpha-ketoglutarate (α-KG) and the oncometabolite 2-hydroxyglutarate (2-HG), known to play a role in the pathogenesis of AML. We have previously shown that the leukemic BM microenvironment is highly hypoxic (Benito PLoS One 2011), andhypoxia has been reported to induce production of the L-enantiomer of 2-HG (L-2HG) (Intlekofer Cell Metabolism 2015). In AML cells, hypoxia selectively induced the production of L-2HG measured by LC-MS/MS in HL-60 (6.2 fold) and OCI-AML3 cells (2.9 fold) with wt-IDH. This increase in L-2HG was potently inhibited by CB-839, implicating Gln as a source for L-2HG production by AML cells under hypoxia. HL-60 and OCI-AML3 AML cells produced very limited amounts of the D-enantiomer of 2HG (D-2HG), and neither hypoxia nor CB-839 significantly affected D-2HG levels. We recently reported that CB-839 increased hydroxymethylation (hmc) levels using a HELP-GT assay (Velez ASH 2015), and the implications of those observations are the subject of ongoing studies. Prompted by the observation of increased hmc in response to CB-839 treatment, we next examined the efficacy of CB-839 in combination with the DNMT3A inhibitor 5-azacitidine (5-AZA). Treatment with 1µM CB-839 and escalating doses of 5-AZA caused additive or synergistic inhibition of cellular growth after 5 days of culture, both under normoxia and hypoxia, in AML cell lines (OCI-AML3, HL-60, MV4;11) and in primary AML cells (n=3) (Fig. 1D). To test the efficacy of both compounds in vivo, we injected NSG-S mice with genetically engineered MV4;11/Luc cells. Bioluminescent imaging (BLI) demonstrated significantly reduced leukemia burden in treated groups compared to controls, more prominently in the CB-839 plus 5-AZA co-treated mice. CB-839 and 5-AZA co-treatment resulted in significant extension of survival compared with 5-AZA single agent, p<0.001 (Fig. 1E). In summary, GLS inhibition causes AML growth arrest by multiple mechanisms, including inhibition of protein synthesis and disruption of redox homeostasis. Gln contributes to hypoxia-induced production of L-2HG and possibly epigenome regulation in AML, and concomitant blockade of GLS by CB-839 and DNMT3A with 5-AZA potently suppresses AML cell growth in vitro and in vivo. The clinical trial examining the efficacy of this combination is ongoing (Calithera, NCT02071927). Disclosures Lorenzi: Erytech Pharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: NIH-held patent related to L-asparaginase. DiNardo:Novartis: Research Funding; Abbvie: Research Funding; Agios: Research Funding; Celgene: Research Funding; Daiichi Sankyo: Research Funding. Konopleva:Calithera: Research Funding; Cellectis: Research Funding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长应助科研通管家采纳,获得20
1分钟前
默默雪旋完成签到 ,获得积分10
2分钟前
2分钟前
Virtual举报kkvv求助涉嫌违规
2分钟前
ZYP应助UWUTUYU采纳,获得10
2分钟前
Virtual举报真君山山长求助涉嫌违规
2分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得50
3分钟前
Virtual举报永不T歇求助涉嫌违规
3分钟前
甜蜜的绿蝶应助gszy1975采纳,获得10
3分钟前
3分钟前
d22110652发布了新的文献求助10
4分钟前
4分钟前
hmhu完成签到,获得积分10
4分钟前
hmhu发布了新的文献求助10
4分钟前
馆长应助科研通管家采纳,获得20
5分钟前
YifanWang应助科研通管家采纳,获得10
5分钟前
6分钟前
333完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
d22110652发布了新的文献求助10
7分钟前
YifanWang应助科研通管家采纳,获得20
7分钟前
YifanWang应助科研通管家采纳,获得20
7分钟前
馆长应助科研通管家采纳,获得30
7分钟前
Hello应助虚幻心锁采纳,获得10
8分钟前
8分钟前
8分钟前
gszy1975完成签到,获得积分10
8分钟前
虚幻心锁发布了新的文献求助10
8分钟前
Virtual举报花海求助涉嫌违规
8分钟前
8分钟前
8分钟前
8分钟前
9分钟前
YifanWang应助科研通管家采纳,获得10
9分钟前
YifanWang应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4498583
求助须知:如何正确求助?哪些是违规求助? 3949652
关于积分的说明 12244684
捐赠科研通 3607992
什么是DOI,文献DOI怎么找? 1984773
邀请新用户注册赠送积分活动 1021163
科研通“疑难数据库(出版商)”最低求助积分说明 913582