切片逆回归
足够的尺寸缩减
线性子空间
维数(图论)
降维
数学
子空间拓扑
力矩(物理)
回归
统计
回归分析
还原(数学)
计量经济学
计算机科学
人工智能
组合数学
数学分析
纯数学
几何学
物理
经典力学
作者
Xiangrong Yin,R. Dennis Cook
标识
DOI:10.1111/1467-9868.00330
摘要
Summary The idea of dimension reduction without loss of information can be quite helpful for guiding the construction of summary plots in regression without requiring a prespecified model. Central subspaces are designed to capture all the information for the regression and to provide a population structure for dimension reduction. Here, we introduce the central kth-moment subspace to capture information from the mean, variance and so on up to the kth conditional moment of the regression. New methods are studied for estimating these subspaces. Connections with sliced inverse regression are established, and examples illustrating the theory are presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI