Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices

储能 纳米技术 聚偏氟乙烯 阳极 超级电容器 电池(电) 化学 材料科学 电极 聚合物 电化学 有机化学 量子力学 物理 物理化学 功率(物理)
作者
Hao Chen,Min Ling,Luke Hencz,Han Li,Gaoran Li,Zhan Lin,Gao Liu,Shanqing Zhang
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:118 (18): 8936-8982 被引量:559
标识
DOI:10.1021/acs.chemrev.8b00241
摘要

Tremendous efforts have been devoted to the development of electrode materials, electrolytes, and separators of energy-storage devices to address the fundamental needs of emerging technologies such as electric vehicles, artificial intelligence, and virtual reality. However, binders, as an important component of energy-storage devices, are yet to receive similar attention. Polyvinylidene fluoride (PVDF) has been the dominant binder in the battery industry for decades despite several well-recognized drawbacks, i.e., limited binding strength due to the lack of chemical bonds with electroactive materials, insufficient mechanical properties, and low electronic and lithium-ion conductivities. The limited binding function cannot meet inherent demands of emerging electrode materials with high capacities such as silicon anodes and sulfur cathodes. To address these concerns, in this review we divide the binding between active materials and binders into two major mechanisms: mechanical interlocking and interfacial binding forces. We review existing and emerging binders, binding technology used in energy-storage devices (including lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, and supercapacitors), and state-of-the-art mechanical characterization and computational methods for binder research. Finally, we propose prospective next-generation binders for energy-storage devices from the molecular level to the macro level. Functional binders will play crucial roles in future high-performance energy-storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助晓彤采纳,获得10
刚刚
传奇3应助芳芳采纳,获得10
1秒前
1秒前
1秒前
Ziyi_Xu发布了新的文献求助10
1秒前
logitech发布了新的文献求助10
1秒前
清爽含灵完成签到,获得积分10
2秒前
闾丘惜萱完成签到,获得积分10
3秒前
3秒前
Ava应助沉默的含巧采纳,获得10
3秒前
阿吉泰完成签到,获得积分10
4秒前
344061512完成签到 ,获得积分10
4秒前
自由冬亦发布了新的文献求助10
6秒前
Murphy~发布了新的文献求助10
6秒前
闾丘惜萱发布了新的文献求助20
6秒前
6秒前
cctv18应助认真的裙子采纳,获得30
7秒前
ding应助清爽含灵采纳,获得10
7秒前
Ziyi_Xu完成签到,获得积分10
7秒前
8秒前
俊逸的大娘完成签到,获得积分10
8秒前
8秒前
研友_Lpawrn发布了新的文献求助10
9秒前
祁曼岚发布了新的文献求助10
9秒前
桐桐应助熊猫爱豆浆采纳,获得10
10秒前
詹军完成签到,获得积分10
11秒前
幽默尔蓉发布了新的文献求助10
11秒前
12秒前
12秒前
乐乐应助loga80采纳,获得10
12秒前
连寒香应助归海若采纳,获得10
13秒前
14秒前
phyllis发布了新的文献求助10
14秒前
15秒前
15秒前
Hello应助澄碧千顷采纳,获得10
15秒前
学术嬴政给学术嬴政的求助进行了留言
15秒前
hcwang完成签到,获得积分10
15秒前
16秒前
xfdywy完成签到,获得积分10
17秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
少脉山油柑叶的化学成分研究 430
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2452290
求助须知:如何正确求助?哪些是违规求助? 2124976
关于积分的说明 5409431
捐赠科研通 1853827
什么是DOI,文献DOI怎么找? 922018
版权声明 562273
科研通“疑难数据库(出版商)”最低求助积分说明 493261