亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction

药物反应 计算机科学 回归 元回归 回归分析 荟萃分析 医学 机器学习 肿瘤科 药品 统计 数学 药理学 内科学
作者
Ran Su,Xinyi Liu,Guobao Xiao,Leyi Wei
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:21 (3): 996-1005 被引量:77
标识
DOI:10.1093/bib/bbz022
摘要

Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
21秒前
22秒前
国色不染尘完成签到,获得积分10
23秒前
可爱的函函应助fheu采纳,获得10
27秒前
kytm完成签到,获得积分10
28秒前
30秒前
33秒前
34秒前
科研难发布了新的文献求助10
35秒前
44秒前
小酥饼完成签到,获得积分10
47秒前
fheu发布了新的文献求助10
48秒前
52秒前
标致飞雪完成签到 ,获得积分10
1分钟前
1分钟前
杨艳完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
SuzhenZH完成签到,获得积分10
1分钟前
朱朱子完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
momo发布了新的文献求助10
1分钟前
果冻橙完成签到,获得积分10
1分钟前
科研通AI5应助跳跃野狼采纳,获得10
1分钟前
怕黑初阳发布了新的文献求助10
1分钟前
在水一方应助momo采纳,获得10
1分钟前
1分钟前
cnbhhhhh发布了新的文献求助10
1分钟前
momo完成签到,获得积分10
1分钟前
1分钟前
怕黑初阳完成签到,获得积分10
1分钟前
1分钟前
一卷钢丝球完成签到,获得积分10
2分钟前
恒温失效发布了新的文献求助10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702