Predictive value of single-nucleotide polymorphism signature for recurrence in localised renal cell carcinoma: a retrospective analysis and multicentre validation study

医学 肾细胞癌 比例危险模型 肾透明细胞癌 肿瘤科 内科学 SNP公司 回顾性队列研究 单核苷酸多态性 基因型 生物信息学 基因 遗传学 生物
作者
Jinhuan Wei,Zi-Hao Feng,Yun Cao,Hong-Wei Zhao,Zhenhua Chen,Bing Liao,Qing Wang,Hui Han,Jin Zhang,Yun-Ze Xu,Bo Li,Ji-Tao Wu,Gui-Mei Qu,guoping wang,Cong Liu,Wei Xue,Qiang Liu,Jun Lü,Cai-Xia Li,Pei-Xing Li
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:20 (4): 591-600 被引量:78
标识
DOI:10.1016/s1470-2045(18)30932-x
摘要

Background Identification of high-risk localised renal cell carcinoma is key for the selection of patients for adjuvant treatment who are at truly higher risk of reccurrence. We developed a classifier based on single-nucleotide polymorphisms (SNPs) to improve the predictive accuracy for renal cell carcinoma recurrence and investigated whether intratumour heterogeneity affected the precision of the classifier. Methods In this retrospective analysis and multicentre validation study, we used paraffin-embedded specimens from the training set of 227 patients from Sun Yat-sen University (Guangzhou, Guangdong, China) with localised clear cell renal cell carcinoma to examine 44 potential recurrence-associated SNPs, which were identified by exploratory bioinformatics analyses of a genome-wide association study from The Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) dataset (n=114, 906 600 SNPs). We developed a six-SNP-based classifier by use of LASSO Cox regression, based on the association between SNP status and patients' recurrence-free survival. Intratumour heterogeneity was investigated from two other regions within the same tumours in the training set. The six-SNP-based classifier was validated in the internal testing set (n=226), the independent validation set (Chinese multicentre study; 428 patients treated between Jan 1, 2004 and Dec 31, 2012, at three hospitals in China), and TCGA set (441 retrospectively identified patients who underwent resection between 1998 and 2010 for localised clear cell renal cell carcinoma in the USA). The main outcome was recurrence-free survival; the secondary outcome was overall survival. Findings Although intratumour heterogeneity was found in 48 (23%) of 206 cases in the internal testing set with complete SNP information, the predictive accuracy of the six-SNP-based classifier was similar in the three different regions of the training set (areas under the curve [AUC] at 5 years: 0·749 [95% CI 0·660–0·826] in region 1, 0·734 [0·651–0·814] in region 2, and 0·736 [0·649–0·824] in region 3). The six-SNP-based classifier precisely predicted recurrence-free survival of patients in three validation sets (hazard ratio [HR] 5·32 [95% CI 2·81–10·07] in the internal testing set, 5·39 [3·38–8·59] in the independent validation set, and 4·62 [2·48–8·61] in the TCGA set; all p<0·0001), independently of patient age or sex and tumour stage, grade, or necrosis. The classifier and the clinicopathological risk factors (tumour stage, grade, and necrosis) were combined to construct a nomogram, which had a predictive accuracy significantly higher than that of each variable alone (AUC at 5 years 0·811 [95% CI 0·756–0·861]). Interpretation Our six-SNP-based classifier could be a practical and reliable predictor that can complement the existing staging system for prediction of localised renal cell carcinoma recurrence after surgery, which might enable physicians to make more informed treatment decisions about adjuvant therapy. Intratumour heterogeneity does not seem to hamper the accuracy of the six-SNP-based classifier as a reliable predictor of recurrence. The classifier has the potential to guide treatment decisions for patients at differing risks of recurrence. Funding National Key Research and Development Program of China, National Natural Science Foundation of China, Guangdong Provincial Science and Technology Foundation of China, and Guangzhou Science and Technology Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李有钱完成签到,获得积分20
1秒前
莱贝特发布了新的文献求助10
1秒前
补丁发布了新的文献求助10
2秒前
帅宝发布了新的文献求助10
2秒前
4秒前
在水一方应助X2q采纳,获得10
5秒前
田様应助李有钱采纳,获得10
5秒前
6秒前
youchgg完成签到,获得积分10
6秒前
顾矜应助哈理老萝卜采纳,获得10
6秒前
爬不起来发布了新的文献求助10
7秒前
7秒前
7秒前
SciGPT应助Chuwei采纳,获得10
7秒前
高兴的海豚完成签到,获得积分10
8秒前
9秒前
zhuo完成签到,获得积分10
9秒前
罗浩发布了新的文献求助10
10秒前
优秀绮彤完成签到,获得积分10
10秒前
YABC完成签到,获得积分20
11秒前
11秒前
科研通AI5应助一一采纳,获得10
12秒前
13秒前
LULU完成签到,获得积分10
13秒前
Ning发布了新的文献求助10
13秒前
可乐发布了新的文献求助10
13秒前
冰魂应助莱贝特采纳,获得10
13秒前
冷酷的戎完成签到 ,获得积分10
14秒前
15秒前
田様应助哭泣时光采纳,获得10
16秒前
YABC发布了新的文献求助10
16秒前
失眠语海完成签到 ,获得积分10
17秒前
17秒前
ws123发布了新的文献求助10
18秒前
composite66完成签到,获得积分10
18秒前
林夏完成签到,获得积分10
18秒前
科研通AI5应助勤奋酒窝采纳,获得30
18秒前
晶晶发布了新的文献求助10
22秒前
一一发布了新的文献求助10
23秒前
科研通AI5应助yuminger采纳,获得10
23秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462