Improving electrical properties and toughening of PZT-based piezoelectric ceramics for high-power applications via doping rare-earth oxides

材料科学 压电 兴奋剂 陶瓷 四方晶系 微观结构 钙钛矿(结构) 复合材料 矿物学 晶体结构 化学工程 光电子学 结晶学 工程类 化学
作者
Jinming Guo,Hu Zhou,Touwen Fan,Bing Zhao,Xunzhong Shang,Taosheng Zhou,Yunbin He
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:9 (6): 14254-14266 被引量:20
标识
DOI:10.1016/j.jmrt.2020.10.022
摘要

Ceramics show brittle nature because of ionic and covalent bondings. However, the need for reliable high-power applications with vibrational displacements under high electric fields and stress loadings demands robust piezoelectric ceramics. In this work, three series of Lead Zirconium Titanate-based piezoelectric ceramics for high-power applications are synthesized via solid solution reaction technique. The microstructures and phases are manipulated by doping different rare-earth oxides Nd2O3, Dy2O3 and Yb2O3. Although all as-sintered piezoelectric ceramics show a perovskite structure with a coexistence of rhombohedral and tetragonal phases, phase fraction, grain size distribution and attendant electrical and mechanical properties vary depending on the doping species and contents. The comprehensive properties of optimized piezoelectric ceramics for high-power applications are: d33 = 292–308 pC/N, kp = 54.2–57.0%, Qm = 320–400, ε33T/ε0 = 1140–1210 and KIC = 1.55–1.60 MPa m1/2. These properties are improved by 19.0%–27.0% compared to the original composition without doping. The toughening mechanism by doping rare-earth oxides is discussed. Nd3+, Dy3+ and Yb3+ substitution and compensation at A-sites of perovskite unit cells generate extrinsic vacancies besides the intrinsic vacancies caused due to PbO evaporation during sintering, which make the domain wall highly mobile and result in softened ferroelectrics. Our results show an efficient route to toughen the PZT-based piezoelectric ceramics and enhance electrical properties synergistically via doping appropriate amounts of rare-earth oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqqyoyoyo发布了新的文献求助10
1秒前
张二狗完成签到,获得积分10
2秒前
xiexie完成签到,获得积分20
2秒前
2秒前
2秒前
科研之路发布了新的文献求助10
3秒前
uilahshd完成签到,获得积分10
3秒前
GlockieZhao发布了新的文献求助10
3秒前
美满的问薇完成签到,获得积分20
5秒前
ding应助nenoaowu采纳,获得10
6秒前
8秒前
小小只发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
gaoyang发布了新的文献求助10
10秒前
尹姝应助keyanchong采纳,获得10
11秒前
动听以晴完成签到,获得积分10
11秒前
积极的迎梦完成签到,获得积分10
12秒前
12秒前
bingbing发布了新的文献求助20
13秒前
万豪完成签到,获得积分10
13秒前
热情的绿真完成签到 ,获得积分10
13秒前
14秒前
科研版无敌暴龙战士完成签到,获得积分10
15秒前
szhshq发布了新的文献求助10
15秒前
CipherSage应助无感慢热采纳,获得10
15秒前
Yxs发布了新的文献求助10
16秒前
SMG完成签到 ,获得积分10
16秒前
秋水发布了新的文献求助10
17秒前
科研通AI6应助taotao采纳,获得10
18秒前
AHND完成签到,获得积分10
21秒前
酥瓜发布了新的文献求助10
22秒前
bkagyin应助暗觉采纳,获得10
23秒前
Cam发布了新的文献求助10
23秒前
pearl发布了新的文献求助30
25秒前
脑洞疼应助香蕉八宝粥采纳,获得10
29秒前
小王完成签到 ,获得积分10
29秒前
30秒前
今后应助积极的迎梦采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Advances in Motivation Science 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4550839
求助须知:如何正确求助?哪些是违规求助? 3980678
关于积分的说明 12324408
捐赠科研通 3649877
什么是DOI,文献DOI怎么找? 2010167
邀请新用户注册赠送积分活动 1045489
科研通“疑难数据库(出版商)”最低求助积分说明 933956