超级电容器
材料科学
微型多孔材料
电容
重量分析
碳化
化学工程
功率密度
碳纤维
多孔性
细菌纤维素
电极
纤维素
纳米技术
比表面积
复合材料
扫描电子显微镜
化学
有机化学
复合数
物理
工程类
量子力学
物理化学
催化作用
功率(物理)
作者
Chenfeng Ding,Tianyi Liu,Xiaodong Yan,Lingbo Huang,Seung‐Kon Ryu,Jinle Lan,Yunhua Yu,Wei‐Hong Zhong,Xiaoping Yang
出处
期刊:Nano-micro Letters
[Springer Science+Business Media]
日期:2020-02-24
卷期号:12 (1)
被引量:114
标识
DOI:10.1007/s40820-020-0393-7
摘要
Abstract A breakthrough in advancing power density and stability of carbon-based supercapacitors is trapped by inefficient pore structures of electrode materials. Herein, an ultra-microporous carbon with ultrahigh integrated capacitance fabricated via one-step carbonization/activation of dense bacterial cellulose (BC) precursor followed by nitrogen/sulfur dual doping is reported. The microporous carbon possesses highly concentrated micropores (~ 2 nm) and a considerable amount of sub-micropores (< 1 nm). The unique porous structure provides high specific surface area (1554 m 2 g −1 ) and packing density (1.18 g cm −3 ). The synergistic effects from the particular porous structure and optimal doping effectively enhance ion storage and ion/electron transport. As a result, the remarkable specific capacitances, including ultrahigh gravimetric and volumetric capacitances (430 F g −1 and 507 F cm −3 at 0.5 A g −1 ), and excellent cycling and rate stability even at a high current density of 10 A g −1 (327 F g −1 and 385 F cm −3 ) are realized. Via compositing the porous carbon and BC skeleton, a robust all-solid-state cellulose-based supercapacitor presents super high areal energy density (~ 0.77 mWh cm −2 ), volumetric energy density (~ 17.8 W L −1 ), and excellent cyclic stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI