On the feature selection for battery state of health estimation based on charging–discharging profiles

电池(电) 特征选择 选择(遗传算法) 原始数据 健康状况 计算机科学 健康指标 可靠性工程 关系(数据库) 人工智能 数据挖掘 工程类 功率(物理) 人口 环境卫生 物理 医学 程序设计语言 量子力学
作者
Yuanyuan Li,Daniel‐Ioan Stroe,Yuhua Cheng,Hanmin Sheng,Xin Sui,Remus Teodorescu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:33: 102122-102122 被引量:117
标识
DOI:10.1016/j.est.2020.102122
摘要

Correctly evaluating the health status of the battery is of great significance for ensuring the safety of electric vehicles, and avoiding potential failures of electric vehicles. Recently, the data-driven methods have raised interest in evaluating battery the battery state of health (SOH) based on the statistical theory. However, the accuracy of the battery state of health estimation algorithms is greatly affected by the model input selection. Because of the limitation for battery data type, it is meaningful to extract the useful data information from the raw data. In this work, we extract health indicators from the battery current, voltage, temperature data based on the laboratory measured experimental data, which can inform model input choices, thus improving the accuracy in battery health estimation. Then, grey relation analysis is used to quantify the correlation between health indicators and battery capacity degradation, and using this quantified result as the basis for the selection of model variables for battery modeling. According to the correlation degree value which calculated by grey relation analysis, it shows that most health indicators are more related to the battery heath. The value of correlation degree for most features are above 90%, and the lowest value is 69%. Finally, the performance of the estimated model based on these health indicator is evaluated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助zhangyulong采纳,获得10
1秒前
浮游应助kkqq采纳,获得10
1秒前
六根清净发布了新的文献求助10
2秒前
风趣采白发布了新的文献求助10
2秒前
tao完成签到,获得积分10
2秒前
贤惠的饼干完成签到,获得积分10
3秒前
砂锅粥应助文件撤销了驳回
3秒前
橙子完成签到 ,获得积分10
4秒前
4秒前
浮游应助yuanyuanxu采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
我是老大应助大半个菜鸟采纳,获得10
8秒前
9秒前
10秒前
一二完成签到,获得积分20
10秒前
球宝发布了新的文献求助10
10秒前
和谐金毛完成签到,获得积分10
10秒前
酷酷的墨镜完成签到,获得积分10
11秒前
脑洞疼应助欣慰的太阳采纳,获得10
11秒前
11秒前
11秒前
发呆小蜗发布了新的文献求助10
12秒前
杨晓白发布了新的文献求助10
12秒前
月亮发布了新的文献求助30
14秒前
月光疾风发布了新的文献求助10
16秒前
坚强的靖柔完成签到,获得积分10
16秒前
小刀yeye发布了新的文献求助10
17秒前
18秒前
浩气长存完成签到 ,获得积分10
18秒前
香蕉觅云应助贤惠的如松采纳,获得10
18秒前
君衡完成签到 ,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070341
求助须知:如何正确求助?哪些是违规求助? 4291451
关于积分的说明 13370479
捐赠科研通 4111769
什么是DOI,文献DOI怎么找? 2251670
邀请新用户注册赠送积分活动 1256789
关于科研通互助平台的介绍 1189429