Modelling Drug-Target Binding Affinity using a BERT based Graph Neural network

可解释性 计算机科学 杠杆(统计) 人工智能 机器学习 图形 卷积神经网络 药物发现 任务(项目管理) 药物靶点 理论计算机科学 生物信息学 药理学 生物 经济 管理 医学
作者
Mark Lennox,Neil Robertson,Barry Devereux
标识
DOI:10.1109/embc46164.2021.9629695
摘要

Understanding the interactions between novel drugs and target proteins is fundamentally important in disease research as discovering drug-protein interactions can be an exceptionally time-consuming and expensive process. Alternatively, this process can be simulated using modern deep learning methods that have the potential of utilising vast quantities of data to reduce the cost and time required to provide accurate predictions. We seek to leverage a set of BERT-style models that have been pre-trained on vast quantities of both protein and drug data. The encodings produced by each model are then utilised as node representations for a graph convolutional neural network, which in turn are used to model the interactions without the need to simultaneously fine-tune both protein and drug BERT models to the task. We evaluate the performance of our approach on two drug-target interaction datasets that were previously used as benchmarks in recent work.Our results significantly improve upon a vanilla BERT baseline approach as well as the former state-of-the-art methods for each task dataset. Our approach builds upon past work in two key areas; firstly, we take full advantage of two large pre-trained BERT models that provide improved representations of task-relevant properties of both drugs and proteins. Secondly, inspired by work in natural language processing that investigates how linguistic structure is represented in such models, we perform interpretability analyses that allow us to locate functionally-relevant areas of interest within each drug and protein. By modelling the drug-target interactions as a graph as opposed to a set of isolated interactions, we demonstrate the benefits of combining large pre-trained models and a graph neural network to make state-of-the-art predictions on drug-target binding affinity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liang_zai完成签到,获得积分10
刚刚
伍贰肆完成签到,获得积分10
1秒前
烨娴完成签到,获得积分10
1秒前
研友_8yNdOL完成签到,获得积分10
1秒前
和花花完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
2秒前
李玲玲完成签到,获得积分10
2秒前
worldlet完成签到,获得积分10
2秒前
Persevere完成签到,获得积分10
3秒前
土豆子完成签到,获得积分10
3秒前
勤劳小海豚完成签到,获得积分10
4秒前
hiipaige完成签到,获得积分10
5秒前
研友_Raven完成签到,获得积分10
5秒前
盐水z发布了新的文献求助10
5秒前
JamesPei应助sweat采纳,获得10
5秒前
哇哈哈哈完成签到,获得积分10
5秒前
AlinaLee应助折木采纳,获得10
6秒前
Ava应助早睡早起的安采纳,获得10
6秒前
LaTeXer应助迷路旭采纳,获得10
6秒前
学术通zzz应助卑鄙之风采纳,获得10
6秒前
lily完成签到,获得积分10
6秒前
6秒前
英俊的高跟鞋完成签到,获得积分10
6秒前
Cing完成签到 ,获得积分10
6秒前
老迟到的友菱完成签到,获得积分10
7秒前
xu完成签到,获得积分20
7秒前
一一应助冬日可爱采纳,获得10
8秒前
稀罕你完成签到,获得积分10
8秒前
刘彤完成签到,获得积分10
8秒前
9秒前
人生完成签到,获得积分10
9秒前
仿生人完成签到,获得积分10
9秒前
hersy完成签到,获得积分10
9秒前
zhangqy完成签到,获得积分10
9秒前
积极er关注了科研通微信公众号
10秒前
ffff完成签到,获得积分10
10秒前
归燕发布了新的文献求助10
10秒前
10秒前
一米八八完成签到 ,获得积分10
11秒前
滴滴哒完成签到,获得积分10
11秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830708
求助须知:如何正确求助?哪些是违规求助? 3373047
关于积分的说明 10477167
捐赠科研通 3093166
什么是DOI,文献DOI怎么找? 1702362
邀请新用户注册赠送积分活动 818956
科研通“疑难数据库(出版商)”最低求助积分说明 771173