计算机科学
加权
利用
代表(政治)
接头(建筑物)
领域(数学分析)
适应(眼睛)
适应性
不变(物理)
域适应
联合概率分布
算法
数据挖掘
人工智能
模式识别(心理学)
数学
统计
法学
建筑工程
物理
数学分析
工程类
放射科
光学
分类器(UML)
政治
生物
医学
计算机安全
数学物理
生态学
政治学
作者
Rosanna Turrisi,Rémi Flamary,Alain Rakotomamonjy,Massimiliano Pontil
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot
日期:2022-01-01
被引量:6
摘要
The problem of domain adaptation on an unlabeled target dataset using knowledge from multiple labelled source datasets is becoming increasingly important. A key challenge is to design an approach that overcomes the covariate and target shift both among the sources, and between the source and target domains. In this paper, we address this problem from a new perspective: instead of looking for a latent representation invariant between source and target domains, we exploit the diversity of source distributions by tuning their weights to the target task at hand. Our method, named Weighted Joint Distribution Optimal Transport (WJDOT), aims at finding simultaneously an Optimal Transport-based alignment between the source and target distributions and a re-weighting of the sources distributions. We discuss the theoretical aspects of the method and propose a conceptually simple algorithm. Numerical experiments indicate that the proposed method achieves state-of-the-art performance on simulated and real-life datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI