Automatic quantification of myocardium and pericardial fat from coronary computed tomography angiography: a multicenter study

医学 放射科 神经组阅片室 心脏病学 核医学 神经学 精神科
作者
Xiuxiu He,Bang Jun Guo,Yang Lei,Tonghe Wang,Walter J. Curran,Tian Liu,Long Jiang Zhang,Xiaofeng Yang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (6): 3826-3836 被引量:8
标识
DOI:10.1007/s00330-020-07482-5
摘要

To develop a deep learning–based method for simultaneous myocardium and pericardial fat quantification from coronary computed tomography angiography (CCTA) for the diagnosis and treatment of cardiovascular disease (CVD). We retrospectively identified CCTA data obtained between May 2008 and July 2018 in a multicenter (six centers) CVD study. The proposed method was evaluated on 422 patients’ data by two studies. The first overall study involves training model on CVD patients and testing on non-CVD patients, as well as training on non-CVD patients and testing on CVD patients. The second study was performed using the leave-center-out approach. The method performance was evaluated using Dice similarity coefficient (DSC), Jaccard index (JAC), 95% Hausdorff distance (HD95), mean surface distance (MSD), residual mean square distance (RMSD), and the center of mass distance (CMD). The robustness of the proposed method was tested using the nonparametric Kruskal-Wallis test and post hoc test to assess the equality of distribution of DSC values among different tests. The automatic segmentation achieved a strong correlation with contour (ICC and R > 0.97, p value  0.97, p value < 0.001) and similar shape as manual annotation by experienced radiologists (median Dice similarity coefficient ≥ 0.88 for pericardial fat and 0.96 for myocardium).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
@_@完成签到,获得积分10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
一一应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
一一应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
一一应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
科研废物完成签到 ,获得积分10
5秒前
5秒前
传奇3应助1111111111111采纳,获得10
5秒前
QQ1122发布了新的文献求助10
7秒前
郭宇发布了新的文献求助10
9秒前
10秒前
13秒前
14秒前
旧旧完成签到 ,获得积分10
14秒前
Tian发布了新的文献求助10
17秒前
科研通AI5应助mtt采纳,获得10
18秒前
18秒前
乐乐应助Summeryz920采纳,获得10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976