已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enabling Highly Effective Boiling from Superhydrophobic Surfaces

沸腾 过热 润湿 材料科学 雷登弗罗斯特效应 核沸腾 成核 传热 纹理(宇宙学) 热流密度 复合材料 热力学 物理 图像(数学) 人工智能 计算机科学
作者
Taylor P. Allred,Justin A. Weibel,Suresh V. Garimella
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:120 (17) 被引量:132
标识
DOI:10.1103/physrevlett.120.174501
摘要

A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wish完成签到,获得积分10
刚刚
fortune发布了新的文献求助10
3秒前
静静想静静地静静完成签到 ,获得积分10
4秒前
搜集达人应助薇子采纳,获得10
7秒前
7秒前
9秒前
思源应助伏线采纳,获得10
9秒前
Sssssss完成签到 ,获得积分10
10秒前
欢呼青易完成签到,获得积分10
10秒前
111完成签到 ,获得积分10
11秒前
12秒前
Silence发布了新的文献求助10
12秒前
16秒前
kingking完成签到,获得积分10
16秒前
海贼学术完成签到 ,获得积分10
18秒前
二七发布了新的文献求助10
18秒前
acihk发布了新的文献求助10
21秒前
Gypsy完成签到 ,获得积分10
21秒前
灌灌灌灌规划关注了科研通微信公众号
25秒前
白露发布了新的文献求助30
27秒前
乐乐应助二七采纳,获得10
27秒前
c0uVi1完成签到,获得积分10
28秒前
怕黑明雪完成签到 ,获得积分10
29秒前
CodeCraft应助小莫采纳,获得10
30秒前
隐形曼青应助土人采纳,获得10
30秒前
思源应助科研通管家采纳,获得10
32秒前
Orange应助科研通管家采纳,获得10
32秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
kai完成签到 ,获得积分10
32秒前
Lucas应助zzh319采纳,获得10
33秒前
科研通AI5应助苗佳采纳,获得30
35秒前
MaoTing发布了新的文献求助10
36秒前
Ava应助额我认为采纳,获得10
40秒前
杨慕陈完成签到,获得积分10
40秒前
笨笨平松发布了新的文献求助10
42秒前
核桃发布了新的文献求助20
44秒前
硫酸烧鹅关注了科研通微信公众号
45秒前
45秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815607
求助须知:如何正确求助?哪些是违规求助? 3359221
关于积分的说明 10400786
捐赠科研通 3076889
什么是DOI,文献DOI怎么找? 1690041
邀请新用户注册赠送积分活动 813613
科研通“疑难数据库(出版商)”最低求助积分说明 767674