Enabling Highly Effective Boiling from Superhydrophobic Surfaces

沸腾 过热 润湿 材料科学 雷登弗罗斯特效应 核沸腾 成核 传热 纹理(宇宙学) 热流密度 复合材料 热力学 计算机科学 图像(数学) 物理 人工智能
作者
Taylor P. Allred,Justin A. Weibel,Suresh V. Garimella
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:120 (17) 被引量:138
标识
DOI:10.1103/physrevlett.120.174501
摘要

A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伯牙发布了新的文献求助10
1秒前
1秒前
FashionBoy应助凌奕添采纳,获得10
2秒前
haohao发布了新的文献求助10
2秒前
Orange应助多情的冥王星采纳,获得10
3秒前
脑洞疼应助ywuuu采纳,获得10
4秒前
吴糖完成签到,获得积分10
4秒前
6秒前
任伟超发布了新的文献求助10
6秒前
乂氼完成签到,获得积分10
7秒前
shaonianliang发布了新的文献求助10
7秒前
7秒前
8秒前
xxxxx完成签到,获得积分10
8秒前
暴龙战士图图完成签到,获得积分10
9秒前
pluto应助御风的抱朴子采纳,获得10
10秒前
香蕉觅云应助虚空的容器采纳,获得10
11秒前
DamonChen完成签到,获得积分10
11秒前
顾文杰完成签到 ,获得积分10
12秒前
张泽钦发布了新的文献求助10
12秒前
所所应助任伟超采纳,获得10
12秒前
15秒前
无花果应助Lum1na采纳,获得10
15秒前
16秒前
包容明辉完成签到 ,获得积分10
16秒前
18秒前
完美世界应助桔子酱采纳,获得10
18秒前
19秒前
20秒前
21秒前
CYYDNDB发布了新的文献求助10
21秒前
22秒前
apiaji应助花花采纳,获得20
22秒前
伯牙完成签到,获得积分10
23秒前
轻松的万天完成签到 ,获得积分10
23秒前
森林发布了新的文献求助10
24秒前
马马发布了新的文献求助10
25秒前
Aorist发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298245
求助须知:如何正确求助?哪些是违规求助? 4446862
关于积分的说明 13840697
捐赠科研通 4332168
什么是DOI,文献DOI怎么找? 2378049
邀请新用户注册赠送积分活动 1373354
关于科研通互助平台的介绍 1338900