亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Crop Classification Based on Differential Characteristics of <inline-formula> <tex-math notation="LaTeX">$H/\alpha$ </tex-math> </inline-formula> Scattering Parameters for Multitemporal Quad- and Dual-Polarization SAR Images

符号 数学 人工智能 算法 合成孔径雷达 计算机科学 算术
作者
Jiao Guo,Pengliang Wei,Jian Liu,Biao Jin,Baofeng Su,Zheng-Shu Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:56 (10): 6111-6123 被引量:53
标识
DOI:10.1109/tgrs.2018.2832054
摘要

Crop-type classification is one of the most significant applications in polarimetric synthetic aperture radar (PolSAR) imagery. As a remote sensing technique, PolSAR has been proved to have the ability to provide high-resolution information of illustrated objects. However, single-temporal PolSAR data are restricted to provide sufficient information for crop identification due to the complicated condition of varying morphology within various growing stages. With an increasing number of spaceborne PolSAR systems launched, a large amount of real PolSAR data are being generated and used to provide great opportunities for multitemporal analysis. The main contribution of this paper is to improve crop classification accuracy with various features of classical $H$ / $\alpha$ parameters. First, in order to deal with dual-PolSAR data, $H$ / $\alpha$ decomposition algorithm for quad-PolSAR is modified to suit to the case of dual polarization. Second, according to the differential scattering characteristics of main crops, a new parameter is innovatively defined to measure the differential characteristics in the $H$ / $\alpha$ classification plane. Third, crop types are discriminated by applying a supervised classification method with the newly defined parameter. Furthermore, the correctness of the parameter is verified with simulated and real Sentinel-1 data as well as AirSAR data. Finally, the performances of the classification method are investigated by the comparison with complex Wishart, Freeman–Wishart, and support vector machine (SVM) classifiers. Hence, the experimental results show that the proposed method and SVM classifier with the newly defined parameter have the ability to improve crop classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
3秒前
zou发布了新的文献求助10
7秒前
Meyako完成签到 ,获得积分0
8秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
天雨流芳完成签到 ,获得积分10
15秒前
迷路的沛芹完成签到 ,获得积分10
15秒前
zou完成签到,获得积分20
19秒前
Pearl发布了新的文献求助10
24秒前
深情安青应助花盆大王采纳,获得50
24秒前
29秒前
29秒前
wanci应助zou采纳,获得10
33秒前
灵巧的斓发布了新的文献求助10
34秒前
为你钟情完成签到 ,获得积分10
41秒前
汉堡包应助Zxc采纳,获得10
42秒前
Pearl完成签到,获得积分10
42秒前
47秒前
55秒前
我爱陶子完成签到 ,获得积分10
56秒前
57秒前
58秒前
1分钟前
1分钟前
Zxc发布了新的文献求助10
1分钟前
cll发布了新的文献求助10
1分钟前
Ye发布了新的文献求助10
1分钟前
Hidy发布了新的文献求助10
1分钟前
Zxc完成签到,获得积分10
1分钟前
核桃应助科研通管家采纳,获得10
1分钟前
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
顾矜应助稳重的泽洋采纳,获得10
1分钟前
超级平文完成签到,获得积分10
1分钟前
YifanWang完成签到,获得积分0
1分钟前
江氏巨颏虎完成签到,获得积分10
1分钟前
完美世界应助灵巧的斓采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469949
求助须知:如何正确求助?哪些是违规求助? 4572951
关于积分的说明 14337741
捐赠科研通 4499833
什么是DOI,文献DOI怎么找? 2465389
邀请新用户注册赠送积分活动 1453763
关于科研通互助平台的介绍 1428323