Visfer: Camera-based visual data transfer for cross-device visualization

计算机科学 意会 人机交互 可视化 杠杆(统计) 移动设备 具身认知 数据可视化 视觉分析 利用 信息可视化 人工智能 万维网 计算机安全
作者
Sriram Karthik Badam,Niklas Elmqvist
出处
期刊:Information Visualization [SAGE Publishing]
卷期号:18 (1): 68-93 被引量:23
标识
DOI:10.1177/1473871617725907
摘要

Going beyond the desktop to leverage novel devices—such as smartphones, tablets, or large displays—for visual sensemaking typically requires supporting extraneous operations for device discovery, interaction sharing, and view management. Such operations can be time-consuming and tedious and distract the user from the actual analysis. Embodied interaction models in these multi-device environments can take advantage of the natural interaction and physicality afforded by multimodal devices and help effectively carry out these operations in visual sensemaking. In this article, we present cross-device interaction models for visualization spaces, that are embodied in nature, by conducting a user study to elicit actions from participants that could trigger a portrayed effect of sharing visualizations (and therefore information) across devices. We then explore one common interaction style from this design elicitation called Visfer, a technique for effortlessly sharing visualizations across devices using the visual medium. More specifically, this technique involves taking pictures of visualizations, or rather the QR codes augmenting them, on a display using the built-in camera on a handheld device. Our contributions include a conceptual framework for cross-device interaction and the Visfer technique itself, as well as transformation guidelines to exploit the capabilities of each specific device and a web framework for encoding visualization components into animated QR codes, which capture multiple frames of QR codes to embed more information. Beyond this, we also present the results from a performance evaluation for the visual data transfer enabled by Visfer. We end the article by presenting the application examples of our Visfer framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷语兰发布了新的文献求助10
刚刚
霍师傅发布了新的文献求助10
1秒前
dabing发布了新的文献求助10
3秒前
勤奋的金毛完成签到,获得积分20
3秒前
Rye227应助什么都不懂采纳,获得10
5秒前
7秒前
8秒前
dabing完成签到,获得积分10
9秒前
自然秋双完成签到 ,获得积分10
11秒前
哭泣朝雪发布了新的文献求助10
13秒前
霍师傅发布了新的文献求助10
15秒前
上官若男应助认真小刺猬采纳,获得10
15秒前
adazbq完成签到 ,获得积分10
21秒前
zw完成签到,获得积分10
21秒前
23秒前
宓广缘完成签到 ,获得积分10
23秒前
SciGPT应助6633采纳,获得10
24秒前
hhhhh完成签到,获得积分10
24秒前
寒冷语兰完成签到,获得积分10
26秒前
27秒前
29秒前
韶光似箭发布了新的文献求助10
30秒前
科研通AI5应助什么都不懂采纳,获得10
30秒前
31秒前
32秒前
32秒前
Larvenpiz完成签到,获得积分10
34秒前
爆米花应助dnmd采纳,获得10
35秒前
36秒前
zeno123456完成签到,获得积分10
36秒前
斯文败类应助信仰采纳,获得10
37秒前
科目三应助hhhhh采纳,获得10
37秒前
虚幻花卷发布了新的文献求助10
37秒前
38秒前
Hyp发布了新的文献求助10
39秒前
39秒前
39秒前
Hello应助tracer采纳,获得10
42秒前
42秒前
魁梧的丹亦完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780078
求助须知:如何正确求助?哪些是违规求助? 3325423
关于积分的说明 10223034
捐赠科研通 3040585
什么是DOI,文献DOI怎么找? 1668935
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614