Radiative Efficiency Limit with Band Tailing Exceeds 30% for Quantum Dot Solar Cells

硫化铅 量子点 材料科学 多激子产生 光电子学 太阳能电池 能量转换效率 硒化铜铟镓太阳电池 碲化镉光电 光伏系统 太阳能电池效率 辐射传输 异质结 纳米技术 光学 物理 生物 生态学
作者
Joel Jean,Thomas S. Mahony,Deniz Bozyigit,Melany Sponseller,Jakub Holovský,Moungi G. Bawendi,Vladimir Bulovic
出处
期刊:ACS energy letters [American Chemical Society]
卷期号:2 (11): 2616-2624 被引量:81
标识
DOI:10.1021/acsenergylett.7b00923
摘要

Thin films of colloidal quantum dots (QDs) are promising solar photovoltaic (PV) absorbers in spite of their disordered nature. Disordered PV materials face a power conversion efficiency limit lower than the ideal Shockley–Queisser bound because of increased radiative recombination through band-tail states. However, investigations of band tailing in QD solar cells have been largely restricted to indirect measurements, leaving their ultimate efficiency in question. Here we use photothermal deflection spectroscopy (PDS) to robustly characterize the absorption edge of lead sulfide (PbS) QD films for different bandgaps, ligands, and processing conditions used in leading devices. We also present a comprehensive overview of band tailing in many commercial and emerging PV technologies—including c-Si, GaAs, a-Si:H, CdTe, CIGS, and perovskites—then calculate detailed-balance efficiency limits incorporating Urbach band tailing for each technology. Our PDS measurements on PbS QDs show sharp exponential band tails, with Urbach energies of 22 ± 1 meV for iodide-treated films and 24 ± 1 meV for ethanedithiol-treated films, comparable to those of polycrystalline CdTe and CIGS films. From these results, we calculate a maximum efficiency of 31%, close to the ideal limit without band tailing. This finding suggests that disorder does not constrain the long-term potential of QD solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
似鱼是于无所求完成签到,获得积分10
刚刚
yuanjingnan发布了新的文献求助10
2秒前
晓静完成签到 ,获得积分10
3秒前
4秒前
芭娜55完成签到 ,获得积分10
5秒前
zzz完成签到,获得积分10
6秒前
可爱的函函应助王珺采纳,获得10
7秒前
思源应助qq采纳,获得10
7秒前
7秒前
我是老大应助junyang采纳,获得10
7秒前
我是老大应助dian采纳,获得10
9秒前
yuanjingnan完成签到,获得积分10
9秒前
9秒前
9秒前
ivye完成签到,获得积分10
10秒前
111发布了新的文献求助10
12秒前
13秒前
清清完成签到,获得积分10
15秒前
pb发布了新的文献求助10
15秒前
积极从蕾应助科研通管家采纳,获得10
19秒前
一一一应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
积极从蕾应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得30
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132221
求助须知:如何正确求助?哪些是违规求助? 3668914
关于积分的说明 11602984
捐赠科研通 3366087
什么是DOI,文献DOI怎么找? 1849323
邀请新用户注册赠送积分活动 912980
科研通“疑难数据库(出版商)”最低求助积分说明 828384