A Deep-Learning intelligent system incorporating data augmentation for Short-Term voltage stability assessment of power systems

不可用 计算机科学 人工智能 理论(学习稳定性) 机器学习 过程(计算) 期限(时间) 深度学习 电力系统 数据挖掘 功率(物理) 工程类 可靠性工程 量子力学 操作系统 物理
作者
Yang Li,Meng Zhang,Chen Chen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:308: 118347-118347 被引量:111
标识
DOI:10.1016/j.apenergy.2021.118347
摘要

Facing the difficulty of expensive and trivial data collection and annotation, how to make a deep learning-based short-term voltage stability assessment (STVSA) model work well on a small training dataset is a challenging and urgent problem. Although a big enough dataset can be directly generated by contingency simulation, this data generation process is usually cumbersome and inefficient; while data augmentation provides a low-cost and efficient way to artificially inflate the representative and diversified training datasets with label preserving transformations. In this respect, this paper proposes a novel deep-learning intelligent system incorporating data augmentation for STVSA of power systems. First, due to the unavailability of reliable quantitative criteria to judge the stability status for a specific power system, semi-supervised cluster learning is leveraged to obtain labeled samples in an original small dataset. Second, to make deep learning applicable to the small dataset, conditional least squares generative adversarial networks (LSGAN)-based data augmentation is introduced to expand the original dataset via artificially creating additional valid samples. Third, to extract temporal dependencies from the post-disturbance dynamic trajectories of a system, a bi-directional gated recurrent unit with attention mechanism based assessment model is established, which bi-directionally learns the significant time dependencies and automatically allocates attention weights. The test results demonstrate the presented approach manages to achieve better accuracy and a faster response time with original small datasets. Besides classification accuracy, this work employs statistical measures to comprehensively examine the performance of the proposal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
02完成签到,获得积分10
1秒前
无花果应助机灵飞兰采纳,获得10
1秒前
英俊溪灵完成签到,获得积分10
2秒前
3秒前
orixero应助jyy采纳,获得50
3秒前
科研通AI2S应助至幸采纳,获得10
5秒前
5秒前
6秒前
7秒前
NexusExplorer应助Yeshenyue采纳,获得10
7秒前
9秒前
zjmm发布了新的文献求助10
10秒前
早睡早起健康长寿完成签到,获得积分10
11秒前
LLL完成签到,获得积分10
12秒前
sgssm完成签到,获得积分10
12秒前
坦率的傲芙完成签到,获得积分10
13秒前
冰洁儿完成签到,获得积分10
13秒前
hss完成签到 ,获得积分10
16秒前
小冯完成签到,获得积分10
17秒前
思源应助lihua采纳,获得10
19秒前
张同学发布了新的文献求助10
19秒前
21秒前
An完成签到,获得积分10
22秒前
27秒前
27秒前
29秒前
30秒前
打地鼠工人完成签到,获得积分10
30秒前
31秒前
32秒前
Oreki完成签到,获得积分10
33秒前
daheeeee发布了新的文献求助10
35秒前
Q蒂发布了新的文献求助10
35秒前
可爱的函函应助panbaobao采纳,获得10
39秒前
隐形曼青应助俏皮的如霜采纳,获得10
40秒前
chicony发布了新的文献求助10
43秒前
张同学完成签到,获得积分10
45秒前
zjmm发布了新的文献求助10
47秒前
SciEngineerX完成签到,获得积分10
48秒前
Summertrain完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779823
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222188
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758552