A Cross-Platform Instant Messaging User Association Method Based on Spatio-temporal Trajectory

计算机科学 弹道 即时消息 联想(心理学) 相似性(几何) 匹配(统计) 电话 关联规则学习 移动电话 即时 数据挖掘 情报检索
作者
Pei Zhou,Xiang Yang Luo,Shaoyong Du,Lingling Li,Yang Yang,Fenlin Liu
出处
期刊:Communications in computer and information science 卷期号:: 430-444
标识
DOI:10.1007/978-3-031-06761-7_35
摘要

AbstractThe current research on cross-platform instant messaging user association is mainly divided into two categories: based on user attributes and based on user behavior. Methods based on user attributes mainly identify users through multiple attributes such as user name and multi-platform user information association based on cell phone number, but user association is not possible when multi-platform user information is inconsistent and users do not grant their address book permissions. Methods based on user behavior mainly calculate the similarity between user trajectories features such as geographic location frequency and co-occurrence, but this method lacks the user’s information, which leads to the inability to fully excavate the sequential features of the trajectory and affects the accuracy of trajectory matching. In order to solve this problem, this paper proposes a cross-platform instant messaging user association algorithm based on temporal trajectories (CPTrajst). We firstly place probes in the area where the target may appear so as to obtain user information, gets user trajectory, then processes the trajectory and performs two trajectory matches, finally associate users of different platforms whose trajectories match, thus increasing the accuracy and reliability of cross-platform instant messaging user association. We conducts specific experiments for users of WeChat and Momo, the most commonly used instant messengers in China. The results show that we can achieve reliable association for these two types of instant messaging users and the user association accuracy can reach 99.5%, which is better than the existing user association algorithms based on trajectory matching.KeywordsInstant messagingSpatio-temporal trajectoryTrajectory matchingCross-platform user association
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wxxxxx完成签到 ,获得积分10
刚刚
1秒前
潇洒寄凡发布了新的文献求助10
1秒前
Aaron完成签到,获得积分10
1秒前
sxin发布了新的文献求助10
7秒前
yelv123完成签到,获得积分10
8秒前
九月发布了新的文献求助200
9秒前
17秒前
polyhedron发布了新的文献求助50
19秒前
Jackylee发布了新的文献求助10
19秒前
21秒前
21秒前
开门啊菇凉完成签到,获得积分0
22秒前
秦时明月发布了新的文献求助10
22秒前
柚子蟹完成签到,获得积分10
22秒前
balko发布了新的文献求助10
23秒前
25秒前
乐乐应助zzz采纳,获得10
25秒前
动听文轩发布了新的文献求助10
25秒前
星辰大海应助liuuuuu采纳,获得10
25秒前
流行咯咯咯完成签到 ,获得积分10
28秒前
28秒前
超级的千青完成签到 ,获得积分10
31秒前
32秒前
33秒前
做不出来发布了新的文献求助10
33秒前
35秒前
haishixigua完成签到,获得积分10
35秒前
zzz发布了新的文献求助10
38秒前
liuuuuu发布了新的文献求助10
39秒前
传奇3应助Nulix采纳,获得10
39秒前
大模型应助sxin采纳,获得50
41秒前
共享精神应助科研通管家采纳,获得10
42秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
CipherSage应助科研通管家采纳,获得10
42秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
共享精神应助科研通管家采纳,获得10
42秒前
钟爱应助科研通管家采纳,获得10
43秒前
852应助科研通管家采纳,获得10
43秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816948
求助须知:如何正确求助?哪些是违规求助? 3360399
关于积分的说明 10407721
捐赠科研通 3078337
什么是DOI,文献DOI怎么找? 1690720
邀请新用户注册赠送积分活动 814023
科研通“疑难数据库(出版商)”最低求助积分说明 767985