A Machine Learning Model Based on Genetic and Traditional Cardiovascular Risk Factors to Predict Premature Coronary Artery Disease

医学 冠状动脉疾病 内科学 疾病 心脏病学 计算机科学
作者
Benrong Liu,Fang Lei,Yujuan Xiong,Qiqi Du,Yang Xiang,Xiaohong Chen,Chaowei Tian,Shiming Liu
出处
期刊:Frontiers in bioscience [IMR Press]
卷期号:27 (7) 被引量:6
标识
DOI:10.31083/j.fbl2707211
摘要

Background: Premature coronary artery disease (PCAD) has a poor prognosis and a high mortality and disability rate. Accurate prediction of the risk of PCAD is very important for the prevention and early diagnosis of this disease. Machine learning (ML) has been proven a reliable method used for disease diagnosis and for building risk prediction models based on complex factors. The aim of the present study was to develop an accurate prediction model of PCAD risk that allows early intervention. Methods: We performed retrospective analysis of single nucleotide polymorphisms (SNPs) and traditional cardiovascular risk factors (TCRFs) for 131 PCAD patients and 187 controls. The data was used to construct classifiers for the prediction of PCAD risk with the machine learning (ML) algorithms LogisticRegression (LRC), RandomForestClassifier (RFC) and GradientBoostingClassifier (GBC) in scikit-learn. Three quarters of the participants were randomly grouped into a training dataset and the rest into a test dataset. The performance of classifiers was evaluated using area under the receiver operating characteristic curve (AUC), sensitivity and concordance index. R packages were used to construct nomograms. Results: Three optimized feature combinations (FCs) were identified: RS-DT-FC1 (rs2259816, rs1378577, rs10757274, rs4961, smoking, hyperlipidemia, glucose, triglycerides), RS-DT-FC2 (rs1378577, rs10757274, smoking, diabetes, hyperlipidemia, glucose, triglycerides) and RS-DT-FC3 (rs1169313, rs5082, rs9340799, rs10757274, rs1152002, smoking, hyperlipidemia, high-density lipoprotein cholesterol). These were able to build the classifiers with an AUC >0.90 and sensitivity >0.90. The nomograms built with RS-DT-FC1, RS-DT-FC2 and RS-DT-FC3 had a concordance index of 0.94, 0.94 and 0.90, respectively, when validated with the test dataset, and 0.79, 0.82 and 0.79 when validated with the training dataset. Manual prediction of the test data with the three nomograms resulted in an AUC of 0.89, 0.92 and 0.83, respectively, and a sensitivity of 0.92, 0.96 and 0.86, respectively. Conclusions: The selection of suitable features determines the performance of ML models. RS-DT-FC2 may be a suitable FC for building a high-performance prediction model of PCAD with good sensitivity and accuracy. The nomograms allow practical scoring and interpretation of each predictor and may be useful for clinicians in determining the risk of PCAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arsenal完成签到 ,获得积分10
刚刚
cindy完成签到 ,获得积分10
8秒前
ozz完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
25秒前
hu完成签到 ,获得积分10
26秒前
30秒前
deniroming完成签到,获得积分10
31秒前
33秒前
iwsaml完成签到 ,获得积分10
43秒前
陶醉的翠霜完成签到 ,获得积分10
47秒前
xybjt完成签到 ,获得积分10
48秒前
玩命的寄翠完成签到 ,获得积分10
51秒前
雪儿完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
1分钟前
bai完成签到,获得积分10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
凌志应助科研通管家采纳,获得50
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
淼淼完成签到 ,获得积分10
1分钟前
欢呼的茗茗完成签到 ,获得积分10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
Jasmineyfz完成签到 ,获得积分10
1分钟前
奋斗的妙海完成签到 ,获得积分0
1分钟前
科奇给简单的求助进行了留言
1分钟前
小阳肖恩完成签到 ,获得积分10
1分钟前
深耕完成签到,获得积分10
1分钟前
LuoYR@SZU完成签到,获得积分10
2分钟前
愉快无心完成签到 ,获得积分10
2分钟前
2分钟前
shen完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
小小吴发布了新的文献求助10
2分钟前
kanong完成签到,获得积分0
2分钟前
Kristine完成签到 ,获得积分10
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4168265
求助须知:如何正确求助?哪些是违规求助? 3703723
关于积分的说明 11689314
捐赠科研通 3390940
什么是DOI,文献DOI怎么找? 1859681
邀请新用户注册赠送积分活动 919953
科研通“疑难数据库(出版商)”最低求助积分说明 832543