Feature Selection Considering Multiple Correlations Based on Soft Fuzzy Dominance Rough Sets for Monotonic Classification

粗集 特征选择 人工智能 数据挖掘 模式识别(心理学) 计算机科学 稳健性(进化) 模糊逻辑 基于优势度的粗糙集方法 模糊集 机器学习 单调函数 数学 化学 数学分析 基因 生物化学
作者
Binbin Sang,Hongmei Chen,Lei Yang,Jihong Wan,Tianrui Li,Weihua Xu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (12): 5181-5195 被引量:15
标识
DOI:10.1109/tfuzz.2022.3169625
摘要

Monotonic classification is a common task in the field of multicriteria decision-making, in which features and decision obey a monotonic constraint. The dominance-based rough set theory is an important mathematical tool for knowledge acquisition in monotonic classification tasks (MCTs). However, existing dominance-based rough set models are very sensitive to noise information, and only a misclassified sample will lead to large errors in acquiring knowledge. This unstable phenomenon does not meet the requirements of practical applications. On the other hand, feature selection is supposedly an effective dimensionality reduction approach for classification tasks. In the real world, feature combinations with multiple correlations can often provide important classification information, where the multiple correlations include redundancy, complementarity, and interaction between features. To the best of our knowledge, most of the existing feature selection methods for MCTs only consider the relevance between features and decision, while ignoring the multiple correlations. To overcome these two drawbacks, in this article, we propose a robust fuzzy dominance rough set model, and develop a feature selection method that considers multiple correlations based on the robust model for MCTs. First, a soft fuzzy dominance rough set (SFDRS) with robustness is proposed. Second, a feature evaluation index considering multiple correlations is presented. Finally, a feature selection algorithm based on SFDRS is designed to select an optimal feature subset. Extensive experiments are conducted on 12 public datasets, and the results show that the SFDRS model has good robustness and the proposed feature selection algorithm has excellent classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
神奇小鹿完成签到 ,获得积分10
刚刚
magic_sweets完成签到,获得积分10
刚刚
犹豫梦菡完成签到 ,获得积分10
1秒前
小小小乐完成签到 ,获得积分10
2秒前
无语的煎蛋完成签到 ,获得积分10
2秒前
时尚语梦完成签到 ,获得积分10
2秒前
lii完成签到,获得积分10
3秒前
然然完成签到 ,获得积分10
3秒前
DJ_Tokyo完成签到,获得积分10
4秒前
不系舟完成签到,获得积分10
4秒前
欣喜的秋莲应助DJ_Tokyo采纳,获得10
8秒前
彳亍宣完成签到 ,获得积分10
9秒前
无止完成签到,获得积分10
10秒前
萱棚完成签到 ,获得积分10
10秒前
smottom完成签到,获得积分0
10秒前
木雨亦潇潇完成签到,获得积分10
11秒前
远航完成签到,获得积分10
12秒前
科研通AI2S应助wjw采纳,获得10
12秒前
yyy完成签到 ,获得积分10
13秒前
紫菜完成签到,获得积分10
15秒前
xiaoyi完成签到 ,获得积分10
15秒前
共享精神应助二花采纳,获得10
16秒前
lele发布了新的文献求助10
18秒前
geopotter完成签到,获得积分10
19秒前
20秒前
科研通AI2S应助wjw采纳,获得10
20秒前
Muccio完成签到 ,获得积分10
21秒前
顺利打开今日易开工完成签到,获得积分10
21秒前
可靠的书本完成签到,获得积分10
22秒前
炙热的雨双完成签到 ,获得积分10
22秒前
Sindy完成签到,获得积分10
24秒前
春花完成签到 ,获得积分10
24秒前
skywalker发布了新的文献求助10
24秒前
老迟到的幼枫完成签到,获得积分10
25秒前
崩溃发布了新的文献求助10
26秒前
大力的诗蕾完成签到 ,获得积分10
26秒前
27秒前
byby完成签到,获得积分10
27秒前
xiangzq完成签到,获得积分10
28秒前
最落幕完成签到 ,获得积分10
28秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503538
求助须知:如何正确求助?哪些是违规求助? 4598913
关于积分的说明 14465126
捐赠科研通 4532754
什么是DOI,文献DOI怎么找? 2484105
邀请新用户注册赠送积分活动 1467327
关于科研通互助平台的介绍 1440219