Computational Identification of Preneoplastic Cells Displaying High Stemness and Risk of Cancer Progression

生物 癌症干细胞 癌变 表观遗传学 DNA甲基化 转录组 细胞分化 干细胞 癌症研究 癌症 人口 癌症的体细胞进化 遗传学 计算生物学 基因 基因表达 医学 环境卫生
作者
Tianyuan Liu,Xuan Zhao,Yuan Lin,Q. Luo,Shaosen Zhang,Yiyi Xi,Yamei Chen,Lin Lin,Wenyi Fan,Jie Yang,Yuling Ma,Alok K. Maity,Yanyi Huang,Jianbin Wang,Jiang Chang,Dongxin Lin,Andrew E. Teschendorff,Chen Wu
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (14): 2520-2537 被引量:18
标识
DOI:10.1158/0008-5472.can-22-0668
摘要

Abstract Evidence points toward the differentiation state of cells as a marker of cancer risk and progression. Measuring the differentiation state of single cells in a preneoplastic population could thus enable novel strategies for early detection and risk prediction. Recent maps of somatic mutagenesis in normal tissues from young healthy individuals have revealed cancer driver mutations, indicating that these do not correlate well with differentiation state and that other molecular events also contribute to cancer development. We hypothesized that the differentiation state of single cells can be measured by estimating the regulatory activity of the transcription factors (TF) that control differentiation within that cell lineage. To this end, we present a novel computational method called CancerStemID that estimates a stemness index of cells from single-cell RNA sequencing data. CancerStemID is validated in two human esophageal squamous cell carcinoma (ESCC) cohorts, demonstrating how it can identify undifferentiated preneoplastic cells whose transcriptomic state is overrepresented in invasive cancer. Spatial transcriptomics and whole-genome bisulfite sequencing demonstrated that differentiation activity of tissue-specific TFs was decreased in cancer cells compared with the basal cell-of-origin layer and established that differentiation state correlated with differential DNA methylation at the promoters of these TFs, independently of underlying NOTCH1 and TP53 mutations. The findings were replicated in a mouse model of ESCC development, and the broad applicability of CancerStemID to other cancer-types was demonstrated. In summary, these data support an epigenetic stem-cell model of oncogenesis and highlight a novel computational strategy to identify stem-like preneoplastic cells that undergo positive selection. Significance: This study develops a computational strategy to dissect the heterogeneity of differentiation states within a preneoplastic cell population, allowing identification of stem-like cells that may drive cancer progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
inyh59完成签到 ,获得积分10
3秒前
老狗子完成签到 ,获得积分10
3秒前
adonis_lu发布了新的文献求助10
3秒前
yukeshou完成签到 ,获得积分10
4秒前
nzxnzx发布了新的文献求助10
5秒前
大模型应助Litrain采纳,获得10
6秒前
suanlafen完成签到 ,获得积分10
6秒前
lmmorz完成签到 ,获得积分20
6秒前
研友_LMrRjn发布了新的文献求助10
7秒前
7秒前
7秒前
Jimmy_King发布了新的文献求助30
10秒前
微笑完成签到,获得积分10
10秒前
栗栗栗子完成签到,获得积分10
11秒前
11秒前
微笑发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
qqwdss完成签到,获得积分20
14秒前
14秒前
Lucas应助hhh采纳,获得10
18秒前
今后应助ni采纳,获得10
20秒前
绿色催化发布了新的文献求助10
20秒前
yo一天完成签到 ,获得积分10
21秒前
秦驿媛发布了新的文献求助10
21秒前
树袋熊完成签到,获得积分10
21秒前
wanci应助PSQ采纳,获得10
21秒前
单身的老太完成签到,获得积分10
22秒前
22秒前
任贱贱发布了新的文献求助10
23秒前
研友_LMrRjn发布了新的文献求助10
24秒前
零九二一发布了新的文献求助10
24秒前
24秒前
25秒前
巴啦啦发布了新的文献求助10
26秒前
26秒前
英姑应助微笑采纳,获得10
27秒前
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122509
求助须知:如何正确求助?哪些是违规求助? 3660393
关于积分的说明 11586634
捐赠科研通 3361677
什么是DOI,文献DOI怎么找? 1847116
邀请新用户注册赠送积分活动 911722
科研通“疑难数据库(出版商)”最低求助积分说明 827579