A deep learning-based method for deviation status detection in intelligent conveyor belt system

带式输送机 人工智能 输送带 深度学习 计算机科学 汽车工程 机器学习 工程类 模式识别(心理学) 环境科学 机械工程
作者
Mengchao Zhang,Kai Jiang,Yueshuai Cao,Meixuan Li,Nini Hao,Yuan Zhang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:363: 132575-132575 被引量:27
标识
DOI:10.1016/j.jclepro.2022.132575
摘要

Belt deviation is one of the most common faults of belt conveyors . Its occurrence not only causes materials to be scattered and affect the environment but also results in abnormal wear of equipment and increased energy consumption, which severely affects the green production and sustainable development of enterprises. Therefore, the rapid and timely detection of the deviation state of conveyor belts is of great significance for ensuring the safe and efficient operation of transportation systems. In view of the disadvantages of the available technology in terms of detection speed, a novel conveyor belt deviation monitoring method based on deep learning is proposed in this paper, which is realized by improving the output results of a general target detection network, YOLOv5, such that the network is enhanced with the ability to detect straight lines instead of bounding box , which effectively solves the problem of rapid feature extraction and deviation judgment of the edges of the conveyor belt of a belt conveyor against a complex background. Experiments show that the proposed method balances detection accuracy and speed, with a detection accuracy of up to 90% and a detection speed of up to 67 frames per second (FPS), and shows good real-time performance. The method greatly simplifies the process of straight-line feature extraction in complex environments, helps realize the intellectualization of conveyors, and achieves unmanned operation and energy savings in coal mines to realize green, energy-saving, and sustainable development while ensuring safe and efficient transportation. • General target detection network-based straight line detection method. • Efficient conveyor belt edge detection under complex scenes. • New detection method of belt deviation to ensure safe and clean transportation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙泉完成签到 ,获得积分10
2秒前
德州老农发布了新的文献求助10
3秒前
肯德鸭完成签到,获得积分10
5秒前
大了个头完成签到 ,获得积分10
8秒前
Accepted完成签到,获得积分10
10秒前
fengzi完成签到 ,获得积分10
10秒前
鱼人完成签到,获得积分10
11秒前
Lynn发布了新的文献求助10
14秒前
自然完成签到,获得积分10
15秒前
谦让成协完成签到,获得积分10
18秒前
菜芽君完成签到,获得积分10
19秒前
路寻完成签到,获得积分10
20秒前
追逐的疯完成签到,获得积分10
20秒前
21秒前
诸葛烤鸭完成签到,获得积分10
21秒前
情怀应助pophoo采纳,获得10
22秒前
22秒前
25秒前
喵喵完成签到 ,获得积分10
26秒前
26秒前
味子橘完成签到 ,获得积分10
27秒前
gxh发布了新的文献求助10
27秒前
28秒前
立军发布了新的文献求助10
28秒前
andy发布了新的文献求助10
28秒前
song完成签到 ,获得积分10
28秒前
koukousang完成签到,获得积分10
29秒前
鲜艳的皮皮虾完成签到 ,获得积分10
31秒前
32秒前
笨笨忘幽发布了新的文献求助10
32秒前
Lazarus_x完成签到,获得积分10
33秒前
物质尽头完成签到 ,获得积分10
33秒前
独狼完成签到 ,获得积分10
36秒前
BettyNie完成签到 ,获得积分10
36秒前
燕聪聪发布了新的文献求助30
36秒前
电闪完成签到,获得积分10
37秒前
赘婿应助德州老农采纳,获得10
39秒前
甜甜甜完成签到 ,获得积分10
40秒前
KCl完成签到 ,获得积分10
42秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734