Anti-Interference From Noisy Labels: Mean-Teacher-Assisted Confident Learning for Medical Image Segmentation

计算机科学 分割 人工智能 偏移量(计算机科学) 市场细分 模式识别(心理学) 图像分割 像素 一致性(知识库) 计算机视觉 机器学习 营销 业务 程序设计语言
作者
Zhe Xu,Donghuan Lu,Jie Luo,Yixin Wang,Jiangpeng Yan,Kai Ma,Yefeng Zheng,Raymond Kai‐Yu Tong
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3062-3073 被引量:56
标识
DOI:10.1109/tmi.2022.3176915
摘要

Manually segmenting medical images is expertise-demanding, time-consuming and laborious. Acquiring massive high-quality labeled data from experts is often infeasible. Unfortunately, without sufficient high-quality pixel-level labels, the usual data-driven learning-based segmentation methods often struggle with deficient training. As a result, we are often forced to collect additional labeled data from multiple sources with varying label qualities. However, directly introducing additional data with low-quality noisy labels may mislead the network training and undesirably offset the efficacy provided by those high-quality labels. To address this issue, we propose a Mean-Teacher-assisted Confident Learning (MTCL) framework constructed by a teacher-student architecture and a label self-denoising process to robustly learn segmentation from a small set of high-quality labeled data and plentiful low-quality noisy labeled data. Particularly, such a synergistic framework is capable of simultaneously and robustly exploiting (i) the additional dark knowledge inside the images of low-quality labeled set via perturbation-based unsupervised consistency, and (ii) the productive information of their low-quality noisy labels via explicit label refinement. Comprehensive experiments on left atrium segmentation with simulated noisy labels and hepatic and retinal vessel segmentation with real-world noisy labels demonstrate the superior segmentation performance of our approach as well as its effectiveness on label denoising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助自然绝悟采纳,获得10
1秒前
迅哥发布了新的文献求助10
1秒前
nick完成签到,获得积分10
1秒前
利利完成签到,获得积分10
2秒前
3秒前
szy完成签到,获得积分10
4秒前
研友_VZG7GZ应助感动书文采纳,获得10
4秒前
5秒前
昏睡的绿海完成签到,获得积分10
6秒前
6秒前
7秒前
Satellites完成签到,获得积分10
7秒前
汪金完成签到,获得积分10
7秒前
VirSnorlax完成签到,获得积分10
8秒前
pursuing完成签到,获得积分10
8秒前
70发布了新的文献求助30
9秒前
11秒前
坦率白竹发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
Z17发布了新的文献求助10
13秒前
13秒前
打打应助滕跃发采纳,获得10
14秒前
16秒前
17秒前
万能图书馆应助迅哥采纳,获得10
17秒前
东方元语发布了新的文献求助20
18秒前
18秒前
19秒前
20秒前
20秒前
Ohh完成签到 ,获得积分10
21秒前
Akim应助烂漫的莹芝采纳,获得10
22秒前
23秒前
等风等你发布了新的文献求助10
23秒前
D点发布了新的文献求助10
24秒前
24秒前
共享精神应助liyuxuan采纳,获得10
25秒前
70完成签到,获得积分10
25秒前
26秒前
qiqi完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560