Phase Prediction Study of High-Entropy Energy Alloy Generation Based on Machine Learning

计算机科学 储能 工艺工程 熵(时间箭头) 太阳能 能量转换 环境科学 人工智能 工程类 热力学 物理 功率(物理) 电气工程
作者
Zhongping He,Huan Zhang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2022: 1-9 被引量:4
标识
DOI:10.1155/2022/8904341
摘要

Traditional energy sources such as fossil fuels can cause environmental pollution on the one hand, and on the other hand, there will be a shortage of diminishing stocks. Recently, a variety of new energy sources have been proposed by scientists, such as nuclear energy, hydrogen energy, wind energy, water energy, and solar energy. There are already many technologies for converting and storing energy generated from new energy systems, such as various storage batteries. One of the keys to the commercialization of these new energy sources is to explore new materials. Researchers have performed a lot of research on new energy material preparation, mechanical properties, radiation resistance, energy storage, etc. However, new energy metal materials are still unable to combine radiation resistance, good mechanical properties, excellent energy storage, and other characteristics. There is still a lack of breakthrough materials with better performance or more stable structure. Recently, researchers have discovered that high-entropy alloys have become one of the most promising new energy metal materials. Because it not only has high energy storage and high strength, but also has high stability and high radiation resistance, and is easy to form a simple phase, the prediction of phases in high-entropy energy alloys is very critical, and the generation of designed phases in high-entropy energy alloys is a very important step. In this study, three machine learning algorithms were used to predict the generated phase classification in high-entropy alloys, namely, support-vector machine (SVM) model, decision tree (DT) model, and random forest (RF) model. The models are optimized by grid search methods and cross-validated, and performance was evaluated with the aim of significantly improving the accuracy of generative phase prediction, and the results show that the random forest algorithm has the best prediction ability, reaching 0.93 prediction accuracy. The ROC (receiver operating characteristic) curve of the model shows that the random forest algorithm has the best classification of solid-solution (SS) phases, where the classification probabilities AUC (area under the curve) area for amorphous phase (AM), intermetallic phase (IM), and solid-solution phase (SS), respectively, are 0.95, 0.96, and 1, respectively, , which can predict the generated phases of high-entropy energy alloys well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄芩完成签到 ,获得积分10
1秒前
2秒前
treasure完成签到,获得积分10
3秒前
3秒前
Epicbird完成签到,获得积分10
4秒前
LIKUN完成签到,获得积分10
4秒前
5秒前
5秒前
自行输入昵称完成签到 ,获得积分10
6秒前
sunny完成签到,获得积分10
6秒前
6秒前
123554完成签到 ,获得积分10
6秒前
wmuer完成签到 ,获得积分10
7秒前
7秒前
爆米花应助HeYan采纳,获得10
8秒前
louis发布了新的文献求助10
9秒前
暮晓见发布了新的文献求助10
9秒前
bluemary发布了新的文献求助10
10秒前
古德day发布了新的文献求助10
11秒前
nenoaowu发布了新的文献求助10
12秒前
13秒前
丘比特应助小黄doge采纳,获得10
13秒前
LaTeXer应助YuJiao采纳,获得50
13秒前
量子星尘发布了新的文献求助10
15秒前
zyx完成签到 ,获得积分10
15秒前
15秒前
万能图书馆应助逍遥猪皮采纳,获得10
17秒前
丘比特应助hyiyi采纳,获得10
18秒前
杨洋发布了新的文献求助10
18秒前
Ava应助糖布里部采纳,获得10
18秒前
心灵美尔槐完成签到,获得积分10
19秒前
微信研友发布了新的文献求助10
19秒前
20秒前
20秒前
CCCCCL完成签到,获得积分10
21秒前
小鱼儿完成签到,获得积分10
21秒前
22秒前
wanci应助小黄doge采纳,获得10
22秒前
学术地瓜发布了新的文献求助10
24秒前
24秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886749
求助须知:如何正确求助?哪些是违规求助? 3429016
关于积分的说明 10763450
捐赠科研通 3154080
什么是DOI,文献DOI怎么找? 1741384
邀请新用户注册赠送积分活动 840632
科研通“疑难数据库(出版商)”最低求助积分说明 785494