Efficient Variational Bayes Learning of Graphical Models With Smooth Structural Changes

计算机科学 图形模型 推论 算法 人工智能 机器学习
作者
Hao Yu,Songwei Wu,Justin Dauwels
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (1): 475-488 被引量:2
标识
DOI:10.1109/tpami.2022.3140886
摘要

Estimating a sequence of dynamic undirected graphical models, in which adjacent graphs share similar structures, is of paramount importance in various social, financial, biological, and engineering systems, since the evolution of such networks can be utilized for example to spot trends, detect anomalies, predict vulnerability, and evaluate the impact of interventions. Existing methods for learning dynamic graphical models require the tuning parameters that control the graph sparsity and the temporal smoothness to be selected via brute-force grid search. Furthermore, these methods are computationally burdensome with time complexity O(NP3) for P variables and N time points. As a remedy, we propose a low-complexity tuning-free Bayesian approach, named BASS. Specifically, we impose temporally dependent spike and slab priors on the graphs such that they are sparse and varying smoothly across time. An efficient variational inference algorithm based on natural gradients is then derived to learn the graph structures from the data in an automatic manner. Owing to the pseudo-likelihood and the mean-field approximation, the time complexity of BASS is only O(NP2). To cope with the local maxima problem of variational inference, we resort to simulated annealing and propose a method based on bootstrapping of the observations to generate the annealing noise. We provide numerical evidence that BASS outperforms existing methods on synthetic data in terms of structure estimation, while being more efficient especially when the dimension P becomes high. We further apply the approach to the stock return data of 78 banks from 2005 to 2013 and find that the number of edges in the financial network as a function of time contains three peaks, in coincidence with the 2008 global financial crisis and the two subsequent European debt crisis. On the other hand, by identifying the frequency-domain resemblance to the time-varying graphical models, we show that BASS can be extended to learning frequency-varying inverse spectral density matrices, and further yields graphical models for multivariate stationary time series. As an illustration, we analyze scalp EEG signals of patients at the early stages of Alzheimer's disease (AD) and show that the brain networks extracted by BASS can better distinguish between the patients and the healthy controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SY完成签到,获得积分10
1秒前
duan完成签到,获得积分10
2秒前
皓轩完成签到 ,获得积分10
3秒前
sos完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
wlkk应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
miao完成签到,获得积分10
5秒前
Alan发布了新的文献求助30
6秒前
袁庚完成签到 ,获得积分10
6秒前
浩气长存完成签到 ,获得积分10
6秒前
果冻橙完成签到,获得积分10
7秒前
爆米花应助如约而至采纳,获得10
9秒前
杨白秋完成签到,获得积分10
10秒前
Ingrid_26完成签到,获得积分10
10秒前
XXY发布了新的文献求助10
11秒前
jixuzhuixun完成签到 ,获得积分10
11秒前
XXY发布了新的文献求助10
11秒前
meimei完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
Lyn完成签到 ,获得积分10
17秒前
回来完成签到,获得积分10
19秒前
清秀的懿轩完成签到 ,获得积分10
19秒前
风格完成签到,获得积分10
19秒前
Alan完成签到,获得积分10
20秒前
Jing完成签到 ,获得积分10
20秒前
celia完成签到 ,获得积分10
20秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872021
求助须知:如何正确求助?哪些是违规求助? 3413885
关于积分的说明 10686898
捐赠科研通 3138447
什么是DOI,文献DOI怎么找? 1731691
邀请新用户注册赠送积分活动 834937
科研通“疑难数据库(出版商)”最低求助积分说明 781478