Root-zone soil moisture estimation based on remote sensing data and deep learning

含水量 数据同化 环境科学 DNS根区域 土壤科学 遥感 归一化差异植被指数 水分 植被(病理学) 土壤水分 气象学 叶面积指数 地质学 地理 生态学 医学 岩土工程 病理 生物
作者
A Yinglan,Guoqiang Wang,Peng Hu,Xiaoying Lai,Baolin Xue,Qingqing Fang
出处
期刊:Environmental Research [Elsevier BV]
卷期号:212: 113278-113278 被引量:52
标识
DOI:10.1016/j.envres.2022.113278
摘要

Soil moisture in the root zone is the most important factor in eco-hydrological processes. Even though soil moisture can be obtained by remote sensing, limited to the top few centimeters (<5 cm). Researchers have attempted to estimate root-zone soil moisture using multiple regression, data assimilation, and data-driven methods. However, correlations between root-zone soil moisture and its related variables, including surface soil moisture, always appear nonlinear, which is difficult to extract and express using typical statistical methods. The artificial intelligence (AI) method, which is advantageous for nonlinear relationship analysis and extraction is applied for root-zone soil moisture estimation, but by only considering its separate temporal or spatial correlations. The convolutional long short-term memory (ConvLSTM) model, known to capture spatiotemporal patterns of large-scale sequential datasets with the advantage of dealing with spatiotemporal sequence-forecasting problem, was used in this study to estimate root-zone soil moisture based on remote sensing-based variables. Owing to limitation of regional soil moisture observation data, the physical model Hydrus-1D was used to generate large and spatiotemporal vertical soil moisture dataset for the ConvLSTM model training and verification. Then, normalized difference vegetation index (NDVI) etc. remote sensing-based factors were selected as predictive variables. Results of the ConvLSTM model showed that the fitting coefficients (R2) of the root-zone soil moisture estimation significantly increased compared to those achieved by Global Land Data Assimilation System products, especially for deep layers. For example, R2 increased from 0.02 to 0.60 at depth of 40 cm. This study suggests that a combination of the physical model and AI is a flexible tool capable of predicting spatiotemporally continuous root-zone soil moisture with good accuracy on a large scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttc完成签到,获得积分10
刚刚
JYoneo发布了新的文献求助10
刚刚
melody完成签到,获得积分10
1秒前
丶丶发布了新的文献求助10
1秒前
1秒前
ying完成签到,获得积分10
1秒前
3秒前
机智的凡梦完成签到,获得积分10
3秒前
yh完成签到,获得积分10
3秒前
MOMO完成签到,获得积分10
3秒前
JamesPei应助霸气的老姆采纳,获得10
4秒前
gf完成签到 ,获得积分10
4秒前
annie完成签到 ,获得积分10
4秒前
十君发布了新的文献求助10
4秒前
小可爱123456完成签到,获得积分10
5秒前
5秒前
齐济完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
科研通AI2S应助调皮蛋采纳,获得10
7秒前
7秒前
klpkyx应助123采纳,获得40
7秒前
平常莹芝完成签到,获得积分10
7秒前
严不平完成签到,获得积分10
8秒前
yanqinding完成签到,获得积分20
8秒前
凡仔完成签到,获得积分10
8秒前
shuaixiaoyu完成签到,获得积分10
8秒前
8秒前
叽里咕噜发布了新的文献求助10
9秒前
后笑晴完成签到,获得积分10
9秒前
Nara2021完成签到,获得积分10
9秒前
Hello~完成签到,获得积分10
9秒前
SCI完成签到,获得积分10
9秒前
慕青应助黎书禾采纳,获得10
9秒前
细心帽子发布了新的文献求助30
9秒前
土豆完成签到,获得积分10
9秒前
123完成签到,获得积分10
10秒前
小趴菜完成签到,获得积分10
10秒前
xavier完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4459168
求助须知:如何正确求助?哪些是违规求助? 3923426
关于积分的说明 12173748
捐赠科研通 3575193
什么是DOI,文献DOI怎么找? 1964084
邀请新用户注册赠送积分活动 1003013
科研通“疑难数据库(出版商)”最低求助积分说明 897770