清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The value of artificial intelligence techniques in predicting pancreatic ductal adenocarcinoma with EUS images: A meta-analysis and systematic review

医学 胰腺癌 漏斗图 荟萃分析 诊断优势比 置信区间 优势比 接收机工作特性 诊断试验中的似然比 内科学 内镜超声 出版偏见 癌症 科克伦图书馆 胃肠病学 放射科
作者
Zhaoshen Li,Hua Yin,Xiaoli Yang,Liqi Sun,Peng Pan,Lisi Peng,Keliang Li,Deyu Zhang,Fang Cui,Chuanchao Xia,Haojie Huang
出处
期刊:Endoscopic ultrasound [Hong Kong STM Publishing Co., Ltd.]
被引量:6
标识
DOI:10.4103/eus-d-21-00131
摘要

ABSTRACT Conventional EUS plays an important role in identifying pancreatic cancer. However, the accuracy of EUS is strongly influenced by the operator’s experience in performing EUS. Artificial intelligence (AI) is increasingly being used in various clinical diagnoses, especially in terms of image classification. This study aimed to evaluate the diagnostic test accuracy of AI for the prediction of pancreatic cancer using EUS images. We searched the Embase, PubMed, and Cochrane Library databases to identify studies that used endoscopic ultrasound images of pancreatic cancer and AI to predict the diagnostic accuracy of pancreatic cancer. Two reviewers extracted the data independently. The risk of bias of eligible studies was assessed using a Deek funnel plot. The quality of the included studies was measured by the QUDAS-2 tool. Seven studies involving 1110 participants were included: 634 participants with pancreatic cancer and 476 participants with nonpancreatic cancer. The accuracy of the AI for the prediction of pancreatic cancer (area under the curve) was 0.95 (95% confidence interval [CI], 0.93–0.97), with a corresponding pooled sensitivity of 93% (95% CI, 0.90-0.95), specificity of 90% (95% CI, 0.8-0.95), positive likelihood ratio 9.1 (95% CI 4.4-18.6), negative likelihood ratio 0.08 (95% CI 0.06-0.11), and diagnostic odds ratio 114 (95% CI 56–236). The methodological quality in each study was found to be the source of heterogeneity in the meta-regression combined model, which was statistically significant ( P = 0.01). There was no evidence of publication bias. The accuracy of AI in diagnosing pancreatic cancer appears to be reliable. Further research and investment in AI could lead to substantial improvements in screening and early diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
17秒前
23秒前
30秒前
43秒前
天玄发布了新的文献求助10
1分钟前
1分钟前
1分钟前
天玄发布了新的文献求助10
1分钟前
1分钟前
糟糕的翅膀完成签到,获得积分10
1分钟前
cy0824完成签到 ,获得积分10
2分钟前
2分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
2分钟前
天玄发布了新的文献求助10
2分钟前
2分钟前
无悔完成签到 ,获得积分10
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
2分钟前
天玄发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
wzbc完成签到,获得积分10
3分钟前
3分钟前
3分钟前
南寅完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
研友_nxw2xL完成签到,获得积分10
6分钟前
muriel完成签到,获得积分0
6分钟前
6分钟前
如歌完成签到,获得积分10
6分钟前
6分钟前
走啊走完成签到,获得积分10
6分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624