Analysis of Pregerminated Barley Using Hyperspectral Image Analysis

高光谱成像 环境科学 数学 遥感 人工智能 计算机科学 地质学
作者
Morten Arngren,Per Waaben Hansen,Birger Eriksen,Jan Larsen,Rasmus Larsen
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:59 (21): 11385-11394 被引量:54
标识
DOI:10.1021/jf202122y
摘要

Pregermination is one of many serious degradations to barley when used for malting. A pregerminated barley kernel can under certain conditions not regerminate and is reduced to animal feed of lower quality. Identifying pregermination at an early stage is therefore essential in order to segregate the barley kernels into low or high quality. Current standard methods to quantify pregerminated barley include visual approaches, e.g. to identify the root sprout, or using an embryo staining method, which use a time-consuming procedure. We present an approach using a near-infrared (NIR) hyperspectral imaging system in a mathematical modeling framework to identify pregerminated barley at an early stage of approximately 12 h of pregermination. Our model only assigns pregermination as the cause for a single kernel's lack of germination and is unable to identify dormancy, kernel damage etc. The analysis is based on more than 750 Rosalina barley kernels being pregerminated at 8 different durations between 0 and 60 h based on the BRF method. Regerminating the kernels reveals a grouping of the pregerminated kernels into three categories: normal, delayed and limited germination. Our model employs a supervised classification framework based on a set of extracted features insensitive to the kernel orientation. An out-of-sample classification error of 32% (CI95%: 29–35%) is obtained for single kernels when grouped into the three categories, and an error of 3% (CI95%: 0–15%) is achieved on a bulk kernel level. The model provides class probabilities for each kernel, which can assist in achieving homogeneous germination profiles. This research can further be developed to establish an automated and faster procedure as an alternative to the standard procedures for pregerminated barley.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
亚铁氰化钾应助viva采纳,获得10
刚刚
脑洞疼应助Nn1采纳,获得10
1秒前
yaocx发布了新的文献求助10
2秒前
阿萨德发布了新的文献求助20
3秒前
4秒前
桐桐应助蓝华采纳,获得10
5秒前
搜集达人应助Cu采纳,获得10
5秒前
Bio完成签到,获得积分0
6秒前
turtle_medchem完成签到,获得积分10
6秒前
zzz完成签到,获得积分10
7秒前
8秒前
勤恳马里奥完成签到,获得积分0
8秒前
梵莫完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
不信慕斯完成签到,获得积分10
10秒前
三人行完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
丘比特应助Danish采纳,获得10
12秒前
12秒前
13秒前
JZF完成签到,获得积分20
14秒前
大胆语儿完成签到,获得积分10
15秒前
秋刀鱼完成签到,获得积分10
16秒前
17秒前
oceanL完成签到,获得积分10
18秒前
香蕉半邪发布了新的文献求助10
18秒前
20秒前
悦007完成签到,获得积分10
20秒前
zym428完成签到,获得积分10
21秒前
happylion完成签到,获得积分10
22秒前
22秒前
hui完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224914
求助须知:如何正确求助?哪些是违规求助? 3758237
关于积分的说明 11813395
捐赠科研通 3419876
什么是DOI,文献DOI怎么找? 1876919
邀请新用户注册赠送积分活动 930347
科研通“疑难数据库(出版商)”最低求助积分说明 838581