涂层
材料科学
生物相容性
壳聚糖
钛
复合材料
生物医学工程
化学工程
冶金
医学
工程类
作者
Xiaofang Wu,Siyu Liu,Kai Chen,Fengyan Wang,Cunao Feng,Linmin Xu,Dekun Zhang
标识
DOI:10.1016/j.ijbiomac.2021.04.046
摘要
To improve the fixation of the prosthesis-bone interface and to prevent postoperative infection, a novel antimicrobial hydrogel coating is designed as the biological fixation interface of the artificial joint prosthesis. Antimicrobial chitosan (CS) and gelatine (GT) were used as bioinks to print a CS-GT hydrogel coating with reticulated porous structure on the titanium alloy substrate by 3D printing technology. The experimental results show that the 7CS-10GT hydrogel coating has a macro-grid structure and honeycomb micro-network structure, excellent hydrophilicity (35.64°), high mechanical strength (elastic modulus 0.92 MPa) and high bonding strength (3.36 MPa) with the titanium alloy substrate. In addition, the antimicrobial effect of 7CS-10GT hydrogel against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) is enhanced after immersion in nano‑silver. Moreover, the 7CS-10GT hydrogel displays good cell compatibility and supports proliferation of NIH-3 T3 cells. In summary, the 3D printed CS-GT antimicrobial hydrogel coating provides an ideal microenvironment for cell adhesion and bone growth due to the dual-scale porous network structure, good hydrophilicity and biocompatibility, thus promoting rapid fixation of the bone interface. This technology opens a new possibility for this biological fixation interface in artificial joint replacement.
科研通智能强力驱动
Strongly Powered by AbleSci AI