数学
随机梯度下降算法
估计员
应用数学
趋同(经济学)
跳跃
梯度下降
随机微分方程
扩散
跳跃过程
数学分析
数学优化
统计
计算机科学
量子力学
热力学
机器学习
物理
经济
人工神经网络
经济增长
作者
Theerawat Bhudisaksang,Álvaro Cartea
出处
期刊:Bernoulli
[Chapman and Hall London]
日期:2021-11-01
卷期号:27 (4)
被引量:5
摘要
We show the convergence of an online stochastic gradient descent estimator to obtain the drift parameter of a continuous-time jump-diffusion process. The stochastic gradient descent follows a stochastic path in the gradient direction of a function to find a minimum, which in our case determines the estimate of the unknown drift parameter. We decompose the deviation of the stochastic descent direction from the deterministic descent direction into four terms: the weak solution of the non-local Poisson equation, a Riemann integral, a stochastic integral, and a covariation term. This decomposition is employed to prove the convergence of the online estimator and we use simulations to illustrate the performance of the online estimator.
科研通智能强力驱动
Strongly Powered by AbleSci AI