Deep learning for joint geophysical inversion of seismic and MT data sets

反演(地质) 接头(建筑物) 地质学 人工神经网络 地球物理学 勘探地球物理学 人工智能 地震学 计算机科学 工程类 土木工程 构造学
作者
Abhinav Pratap Singh,Divakar Vashisth,Shalivahan Srivastava
标识
DOI:10.1190/segam2021-3583955.1
摘要

PreviousNext No AccessFirst International Meeting for Applied Geoscience & Energy Expanded AbstractsDeep learning for joint geophysical inversion of seismic and MT data setsAuthors: Abhinav Pratap SinghDivakar VashisthShalivahan SrivastavaAbhinav Pratap SinghIndian Institute of Technology, Indian School of Mines, India.Search for more papers by this author, Divakar VashisthIndian Institute of Technology, Indian School of Mines, India.Search for more papers by this author, and Shalivahan SrivastavaIndian Institute of Technology, Indian School of Mines, India.Search for more papers by this authorhttps://doi.org/10.1190/segam2021-3583955.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractUsing more than one geophysical technique provides a more reliable way to delineate the subsurface structure than a single geophysical method. In this paper, we present a novel way for the joint inversion of seismic and MT datasets using artificial neural networks. Different rock models are taken to compute the joint relation between the porosity, shale content, velocity and resistivity of the strata. The velocity and resistivity models thus generated were used to compute seismic traces and apparent resistivity curves, the dataset used for training and testing the neural network. Such a method of performing joint inversion is advantageous when we want to check the reliability of our Machine Learning model in regions of low velocity or when a particular physical property does not vary across the layers while another does since, unlike other optimisation schemes used for the geophysical inversion, we do not need to rerun the model for every initial model. The efficacy of artificial neural networks (ANN) to perform the join inversion is tested, and in the process, a particular type of ANN architecture is developed.Keywords: neural networks, magnetotelluric, inversion, integration, seismic impedancePermalink: https://doi.org/10.1190/segam2021-3583955.1FiguresReferencesRelatedDetails First International Meeting for Applied Geoscience & Energy Expanded AbstractsISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2021 Pages: 3561 publication data© 2021 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished: 01 Sep 2021 CITATION INFORMATION Abhinav Pratap Singh, Divakar Vashisth, and Shalivahan Srivastava, (2021), "Deep learning for joint geophysical inversion of seismic and MT data sets," SEG Technical Program Expanded Abstracts : 1741-1745. https://doi.org/10.1190/segam2021-3583955.1 Plain-Language Summary Keywordsneural networksmagnetotelluricinversionintegrationseismic impedancePDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ctc发布了新的文献求助10
1秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
7秒前
脑洞疼应助科研通管家采纳,获得30
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
HIMINNN发布了新的文献求助20
7秒前
8秒前
rumengren完成签到 ,获得积分10
9秒前
汉堡包应助Joule采纳,获得30
11秒前
平常煎饼发布了新的文献求助10
11秒前
木兮完成签到,获得积分20
11秒前
bkagyin应助xw采纳,获得10
12秒前
13秒前
13秒前
13秒前
lin完成签到,获得积分10
15秒前
Marciu33应助ctc采纳,获得10
15秒前
完美世界应助ctc采纳,获得10
15秒前
KYT发布了新的文献求助10
15秒前
d22110652发布了新的文献求助10
16秒前
Zoeforever发布了新的文献求助10
18秒前
18秒前
桐桐应助小飞鼠采纳,获得10
19秒前
HIMINNN发布了新的文献求助20
21秒前
风趣踏歌发布了新的文献求助10
21秒前
22秒前
Rewi_Zhang完成签到,获得积分10
27秒前
27秒前
ranlan发布了新的文献求助10
28秒前
28秒前
情怀应助blue采纳,获得10
30秒前
小飞鼠发布了新的文献求助10
30秒前
大模型应助T拐拐采纳,获得10
33秒前
11532发布了新的文献求助10
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4166038
求助须知:如何正确求助?哪些是违规求助? 3701775
关于积分的说明 11686367
捐赠科研通 3390264
什么是DOI,文献DOI怎么找? 1859244
邀请新用户注册赠送积分活动 919599
科研通“疑难数据库(出版商)”最低求助积分说明 832281