Image Reflection Removal via Contextual Feature Fusion Pyramid and Task-Driven Regularization

计算机科学 人工智能 鉴别器 模式识别(心理学) 计算机视觉 卷积神经网络 特征(语言学) 棱锥(几何) 数学 几何学 语言学 电信 探测器 哲学
作者
Yuenan Li,Qixin Yan,Kuangshi Zhang,Haoyu Xu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (2): 553-565 被引量:3
标识
DOI:10.1109/tcsvt.2021.3067502
摘要

In this paper, we propose a deep neural network for single image reflection removal. More specifically, we design a convolutional-grid module and take it as the building block of a feature fusion pyramid. The module leverages the combination effect of the grid topology to create a rich ensemble of receptive fields. Embedding the modules into a pyramidal architecture further expands the coverage of receptive fields. Another benefit of the pyramid is to fuse the multi-scale features learned by the modules locating at the ascending and descending pathways. The rich diversity of features helps the neural network analyze the contexts around overlapping objects at various spatial ranges and harvest the cues for layer separation. The proposed work also exploits useful semantic cues from the hyper-column descriptors generated by a pre-trained VGG-19 model to reduce the ambiguity of layer separation. In light of the low correlation between background and reflection layers, we design a channel-correlation based conditional discriminator to penalize residual reflection. The discriminator uses channel-wise attention to screen the features that can distinguish real background images from estimated ones. This paper also presents a task-driven regularization strategy. The high sensitivity of semantic segmentation to reflection is exploited for assessing the completeness of reflection removal. Training with this regularization strategy can boost the performance of both reflection removal and high-level task. The comparison against state-of-the-art algorithms on four public benchmark datasets demonstrates that this work exhibits superior performance in handling the complex reflections in wild scenarios. The proposed network architecture is also applicable to haze removal, which is another ill-posed layer separation problem, and has shown encouraging performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr.Wang完成签到,获得积分10
刚刚
1秒前
外向访卉发布了新的文献求助10
2秒前
慕青应助小门采纳,获得10
2秒前
4秒前
6秒前
隐形双双完成签到 ,获得积分10
10秒前
11秒前
ukmy发布了新的文献求助10
11秒前
11秒前
Jasper应助郑大小神龙采纳,获得10
11秒前
不呆发布了新的文献求助20
12秒前
13秒前
哈里鹿呀发布了新的文献求助10
13秒前
13秒前
大模型应助mmy采纳,获得10
14秒前
星辰大海应助开放觅夏采纳,获得10
14秒前
ty发布了新的文献求助10
15秒前
爱笑的鹿发布了新的文献求助10
15秒前
15秒前
Timezzz发布了新的文献求助30
16秒前
研友_ZzrwqZ发布了新的文献求助10
16秒前
想毕业完成签到,获得积分10
17秒前
17秒前
曾蕙茹关注了科研通微信公众号
17秒前
龙欣完成签到,获得积分10
18秒前
18秒前
peace发布了新的文献求助30
18秒前
所所应助生动友绿采纳,获得10
19秒前
19秒前
donal发布了新的文献求助10
20秒前
MutantKitten完成签到,获得积分10
20秒前
21秒前
HEANZ完成签到,获得积分10
21秒前
哈里鹿呀完成签到,获得积分10
21秒前
21秒前
22秒前
爱笑的鹿完成签到,获得积分10
22秒前
22秒前
22秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4052572
求助须知:如何正确求助?哪些是违规求助? 3590869
关于积分的说明 11411535
捐赠科研通 3317165
什么是DOI,文献DOI怎么找? 1824571
邀请新用户注册赠送积分活动 896170
科研通“疑难数据库(出版商)”最低求助积分说明 817311