A Computationally Efficient Spatial Online Temperature Prediction Method for PM Machines

计算机科学 人工神经网络 温度测量 热的 钥匙(锁) 机器学习 人工智能 算法 数据挖掘 计算机安全 量子力学 物理 气象学
作者
Zhiyu Sheng,Dong Wang,Fang Jia,Jinghua Hu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (11): 10904-10914 被引量:1
标识
DOI:10.1109/tie.2021.3123644
摘要

Conventionalpermanent magnet (PM) machine temperature assessment approaches require physical, material, and loss distribution information. In practice, accurate structural information is rarely available, a lot of thermal parameters can only be calibrated based on extensive experiments, and the determination of various machine losses is also a demanding task. To solve these problems, an online temperature prediction method is proposed in this article. A general mathematical model that describes the relationship between machine temperature and loss variation is derived through analyzing a PM machine three-dimensional lumped parameter thermal network. With distributed sensors, this model can be determined purely from the measured data, which eliminates the need to acquire machine physical and material information. The analyses of loss distribution are also avoided by utilizing two measured temperatures. The evolution of all sensors can be concerned, so the prediction of the time and spatial distribution of temperature can be realized. The proposed method is validated by the experiments processed on a 10-kW PM machine under various working conditions. The influences of key parameters and the comparison with a neural network model are also demonstrated. The results suggest that the proposed method has the advantage of possessing closed-form expression and being computationally efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
驴橘子窈发布了新的文献求助10
1秒前
1秒前
科研通AI5应助Aurora采纳,获得10
2秒前
FashionBoy应助yujia采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助伶俐惜萱采纳,获得30
2秒前
long0809发布了新的文献求助10
3秒前
欢城发布了新的文献求助10
3秒前
3秒前
慕容博发布了新的文献求助10
3秒前
4秒前
顾矜应助彩色青亦采纳,获得10
4秒前
科研通AI5应助牛牛采纳,获得10
4秒前
5秒前
上官若男应助小苏采纳,获得10
6秒前
程雯慧发布了新的文献求助10
6秒前
鹿小新发布了新的文献求助10
6秒前
qqa发布了新的文献求助10
6秒前
思源应助大方研究生采纳,获得10
7秒前
苹果千秋完成签到 ,获得积分10
8秒前
CipherSage应助林小乌龟采纳,获得10
8秒前
good233发布了新的文献求助10
9秒前
9秒前
小新关注了科研通微信公众号
10秒前
zyc1111111应助shuang0116采纳,获得50
10秒前
11秒前
落日飞机发布了新的文献求助10
11秒前
dfggg发布了新的文献求助10
12秒前
12秒前
眰恦完成签到 ,获得积分10
12秒前
郭郭发布了新的文献求助10
12秒前
12秒前
韶冥茗完成签到,获得积分10
13秒前
Hello应助nienie采纳,获得10
14秒前
14秒前
Akasazi发布了新的文献求助10
16秒前
16秒前
充电宝应助称心不尤采纳,获得10
17秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271