已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Out-of-distribution generalization from labelled and unlabelled gene expression data for drug response prediction

一般化 计算机科学 药物基因组学 一致性(知识库) 学习迁移 标记数据 药物反应 分布(数学) 领域(数学分析) 人工智能 机器学习 数据挖掘 药品 数学 生物信息学 医学 生物 数学分析 精神科
作者
Hossein Sharifi-Noghabi,Parsa Alamzadeh Harjandi,Olga Zolotareva,Colin C. Collins,Martin Ester
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (11): 962-972 被引量:23
标识
DOI:10.1038/s42256-021-00408-w
摘要

Data discrepancy between preclinical and clinical datasets poses a major challenge for accurate drug response prediction based on gene expression data. Different methods of transfer learning have been proposed to address such data discrepancy in drug response prediction for different cancers. These methods generally use cell lines as source domains, and patients, patient-derived xenografts or other cell lines as target domains; however, it is assumed that the methods have access to the target domain during training or fine-tuning, and they can only take labelled source domains as input. The former is a strong assumption that is not satisfied during deployment of these models in the clinic, whereas the latter means these methods rely on labelled source domains that are of limited size. To avoid these assumptions, we formulate drug response prediction in cancer as an out-of-distribution generalization problem, which does not assume that the target domain is accessible during training. Moreover, to exploit unlabelled source domain data—which tends to be much more plentiful than labelled data—we adopt a semi-supervised approach. We propose Velodrome, a semi-supervised method of out-of-distribution generalization that takes labelled and unlabelled data from different resources as input and makes generalizable predictions. Velodrome achieves this goal by introducing an objective function that combines a supervised loss for accurate prediction, an alignment loss for generalization and a consistency loss to incorporate unlabelled samples. Our experimental results demonstrate that Velodrome outperforms state-of-the-art pharmacogenomics and transfer learning baselines on cell lines, patient-derived xenografts and patients. Finally, we showed that Velodrome models generalize to different tissue types that were well-represented, under-represented or completely absent in the training data. Overall, our results suggest that Velodrome may guide precision oncology more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
丸橙发布了新的文献求助10
10秒前
小紫薯完成签到 ,获得积分10
12秒前
kento完成签到,获得积分0
13秒前
南风发布了新的文献求助30
15秒前
烟里戏完成签到 ,获得积分10
16秒前
SciGPT应助CoCo采纳,获得10
17秒前
Victor完成签到,获得积分10
18秒前
啦啦啦完成签到,获得积分10
19秒前
旧雨新知完成签到 ,获得积分0
19秒前
22秒前
畅快枕头完成签到 ,获得积分10
23秒前
shenlee发布了新的文献求助10
28秒前
29秒前
sangsang完成签到,获得积分10
33秒前
CoCo发布了新的文献求助10
36秒前
orixero应助丸橙采纳,获得10
36秒前
香香丿完成签到 ,获得积分10
43秒前
48秒前
Oracle应助科研通管家采纳,获得20
48秒前
48秒前
50秒前
飞快的语蕊完成签到,获得积分10
51秒前
小蘑菇应助003采纳,获得20
51秒前
123发布了新的文献求助10
56秒前
广东第一深情完成签到,获得积分10
1分钟前
情怀应助sangsang采纳,获得10
1分钟前
LK完成签到,获得积分10
1分钟前
GGBoy完成签到 ,获得积分10
1分钟前
003发布了新的文献求助20
1分钟前
123完成签到,获得积分10
1分钟前
南风完成签到,获得积分10
1分钟前
1分钟前
1分钟前
往复发布了新的文献求助10
1分钟前
郦如花发布了新的文献求助10
1分钟前
丘比特应助围城采纳,获得10
1分钟前
红绿蓝完成签到 ,获得积分10
1分钟前
ding应助zfczfc采纳,获得10
1分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830364
求助须知:如何正确求助?哪些是违规求助? 3372779
关于积分的说明 10475199
捐赠科研通 3092539
什么是DOI,文献DOI怎么找? 1702118
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087