已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Out-of-distribution generalization from labelled and unlabelled gene expression data for drug response prediction

一般化 计算机科学 药物基因组学 一致性(知识库) 学习迁移 标记数据 药物反应 分布(数学) 领域(数学分析) 人工智能 机器学习 数据挖掘 药品 数学 生物信息学 医学 生物 数学分析 精神科
作者
Hossein Sharifi-Noghabi,Parsa Alamzadeh Harjandi,Olga Zolotareva,Colin C. Collins,Martin Ester
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (11): 962-972 被引量:23
标识
DOI:10.1038/s42256-021-00408-w
摘要

Data discrepancy between preclinical and clinical datasets poses a major challenge for accurate drug response prediction based on gene expression data. Different methods of transfer learning have been proposed to address such data discrepancy in drug response prediction for different cancers. These methods generally use cell lines as source domains, and patients, patient-derived xenografts or other cell lines as target domains; however, it is assumed that the methods have access to the target domain during training or fine-tuning, and they can only take labelled source domains as input. The former is a strong assumption that is not satisfied during deployment of these models in the clinic, whereas the latter means these methods rely on labelled source domains that are of limited size. To avoid these assumptions, we formulate drug response prediction in cancer as an out-of-distribution generalization problem, which does not assume that the target domain is accessible during training. Moreover, to exploit unlabelled source domain data—which tends to be much more plentiful than labelled data—we adopt a semi-supervised approach. We propose Velodrome, a semi-supervised method of out-of-distribution generalization that takes labelled and unlabelled data from different resources as input and makes generalizable predictions. Velodrome achieves this goal by introducing an objective function that combines a supervised loss for accurate prediction, an alignment loss for generalization and a consistency loss to incorporate unlabelled samples. Our experimental results demonstrate that Velodrome outperforms state-of-the-art pharmacogenomics and transfer learning baselines on cell lines, patient-derived xenografts and patients. Finally, we showed that Velodrome models generalize to different tissue types that were well-represented, under-represented or completely absent in the training data. Overall, our results suggest that Velodrome may guide precision oncology more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq发布了新的文献求助10
刚刚
HF7发布了新的文献求助10
1秒前
迦鳞完成签到 ,获得积分10
2秒前
斯文败类应助HF7采纳,获得10
5秒前
酷波er应助知足的憨人*-*采纳,获得10
7秒前
zhanzhanzhan发布了新的文献求助10
8秒前
ming完成签到,获得积分20
9秒前
10秒前
12秒前
超帅的心锁完成签到,获得积分20
13秒前
Dyying应助Achange采纳,获得10
13秒前
等待若山发布了新的文献求助10
14秒前
jietaocn完成签到 ,获得积分10
15秒前
ab发布了新的文献求助10
17秒前
18秒前
小白又鹏发布了新的文献求助10
18秒前
排骨炖豆角完成签到 ,获得积分10
20秒前
等待若山完成签到,获得积分10
24秒前
25秒前
科研通AI2S应助yang采纳,获得30
28秒前
小白又鹏完成签到,获得积分10
29秒前
31秒前
SAN关闭了SAN文献求助
33秒前
七年发布了新的文献求助10
34秒前
阿童木完成签到 ,获得积分10
36秒前
SciGPT应助bbbabo采纳,获得10
37秒前
xff关闭了xff文献求助
38秒前
m(_._)m完成签到 ,获得积分0
39秒前
44秒前
共享精神应助nn采纳,获得10
44秒前
共享精神应助开朗的尔风采纳,获得30
47秒前
btsforever完成签到 ,获得积分10
48秒前
bbbabo发布了新的文献求助10
49秒前
Mental完成签到,获得积分10
49秒前
今后应助读书的时候采纳,获得30
50秒前
张晓娜完成签到 ,获得积分10
50秒前
sisyphus_yy完成签到 ,获得积分10
52秒前
专注的芷完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
58秒前
开朗的尔风完成签到,获得积分20
59秒前
高分求助中
Semantics for Latin: An Introduction 1055
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Multimodal injustices: Speech acts, gender bias, and speaker’s status 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4104844
求助须知:如何正确求助?哪些是违规求助? 3642662
关于积分的说明 11541508
捐赠科研通 3350556
什么是DOI,文献DOI怎么找? 1840911
邀请新用户注册赠送积分活动 907801
科研通“疑难数据库(出版商)”最低求助积分说明 824964