Rib segmentation algorithm for X-ray image based on unpaired sample augmentation and multi-scale network

分割 计算机科学 人工智能 稳健性(进化) 模式识别(心理学) 精确性和召回率 算法 图像分割 雅卡索引 尺度空间分割 生物 生物化学 基因
作者
Hongyu Wang,Dandan Zhang,Songtao Ding,Zhanyi Gao,Jun Feng,Shaohua Wan
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
卷期号:35 (16): 11583-11597 被引量:40
标识
DOI:10.1007/s00521-021-06546-x
摘要

Rib segmentation based on chest X-ray images is essential in the computer-aided diagnosis systems of lung cancer, which serves as an important step in the quantitative analysis of various types of lung diseases. However, the traditional methods are unable to segment ribs effectively due to the unclear edges and overlapping regions in X-ray images. A novel rib segmentation framework based on Unpaired Sample Augmentation and Multi-Scale Network is presented in this paper, aiming to improve the accuracy of ribs segmentation with limited labeled samples. First, the algorithm learns pneumonia-related texture changes via unpaired chest x-ray images and generates various augmented samples. Then, a multi-scale network attempts to learn hierarchical features using global supervision. Finally, the refined segmentation result of each organ is achieved by using a deep separation module and a comprehensive loss function. Specifically, the hierarchical features can greatly improve the robustness of multi-organ segmentation networks. The complex multi-organ segmentation task with limited labeled data is simplified with the designed deep separation module. We justify the proposed framework through extensive experiments. It achieves good performance with DSC, Precision, Recall, and Jaccard of 88.03, 88.25, 88.36, and 79.02%, respectively. The DSC value increases nearly by 3% compared to other popular methods. The experimental results show that our algorithm presents better segmentation performance for the overlapping region and fuzzy region of multiple organs, which holds research value and prospects for application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐正鑫完成签到,获得积分10
1秒前
bbsheng发布了新的文献求助10
1秒前
故槿完成签到,获得积分10
2秒前
2秒前
2秒前
刘乐源完成签到,获得积分20
3秒前
小茗同学完成签到,获得积分10
3秒前
3秒前
今天只做一件事应助荣荣采纳,获得10
3秒前
4秒前
独特觅儿发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
echo应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助Jane采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
桐桐应助AAA建材批发原哥采纳,获得10
6秒前
6秒前
7秒前
情怀应助有机化学采纳,获得10
7秒前
7秒前
7秒前
zxh发布了新的文献求助10
7秒前
小兔叽完成签到,获得积分10
8秒前
星辰大海应助机灵安白采纳,获得10
10秒前
可爱的函函应助Enoch采纳,获得10
10秒前
自然醒发布了新的文献求助10
10秒前
10秒前
11秒前
花开hhhhhhh发布了新的文献求助10
11秒前
11秒前
11秒前
nuannuan完成签到 ,获得积分10
11秒前
bbsheng完成签到,获得积分10
11秒前
Jasper应助爱拉臭粑采纳,获得10
12秒前
12秒前
xrl完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4835575
求助须知:如何正确求助?哪些是违规求助? 4139231
关于积分的说明 12812713
捐赠科研通 3883419
什么是DOI,文献DOI怎么找? 2135490
邀请新用户注册赠送积分活动 1155584
关于科研通互助平台的介绍 1054989