Measuring Prediction Accuracy in a Maritime Accident Warning System

计算机科学 背景(考古学) 端口(电路理论) 预警系统 海岸警卫队 灵敏度(控制系统) Guard(计算机科学) 机器学习 运筹学 数据挖掘 风险分析(工程) 电气工程 程序设计语言 海洋工程 古生物学 工程类 生物 电信 医学 电子工程
作者
Jason R. W. Merrick,Claire A. Dorsey,Bo Wang,Martha Grabowski,John R. Harrald
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (2): 819-827 被引量:18
标识
DOI:10.1111/poms.13581
摘要

Advances in machine learning methods and the availability of new data sources show promise for improving prediction of operational risk. Maritime transportation is the backbone of global supply chains and maritime accidents can lead to costly disruptions. We describe a case study performed for the United States Coast Guard (USCG) to develop a prototype risk prediction system to provide early alerts of elevated risk levels to vessel traffic managers and operators in the Lower Mississippi River, the second largest port of entry in the United States. Integrating incident and accident data from the USCG with environmental and traffic data sources, we tested existing machine learning algorithms in their predictive ability. We found poor accident prediction accuracy in cross‐validation using the traditional measures of precision and sensitivity. In this specific operational context, however, such single‐class accuracy metrics can be misleading. We define action precision and action sensitivity metrics that measure the accuracy of predictions in engendering the correct behavioral response (actions) among vessel operators, rather than getting the specific event classification correct. We use these operationally appropriate measures for maritime risk prediction to choose an algorithm for our prototype system. While the traditional metrics indicated that none of the algorithms would perform sufficiently well to use in the early warning system, the modified metrics show that the top performing algorithm will perform well in this operational context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
得意洋洋发布了新的文献求助10
刚刚
CL发布了新的文献求助10
1秒前
尉迟希望发布了新的文献求助10
4秒前
LiAlan发布了新的文献求助10
4秒前
fang应助岩崖采纳,获得10
4秒前
6秒前
6秒前
微笑绿旋应助真实的枕头采纳,获得30
6秒前
6秒前
7秒前
feijelly完成签到,获得积分10
7秒前
最佳完成签到,获得积分10
7秒前
解达完成签到,获得积分10
8秒前
zyc1111111完成签到,获得积分10
9秒前
青q完成签到,获得积分10
10秒前
李健应助l98916采纳,获得10
11秒前
CL完成签到,获得积分10
12秒前
最佳发布了新的文献求助10
12秒前
复杂数据线完成签到,获得积分10
13秒前
寒冷的寻菱完成签到,获得积分10
13秒前
无花果应助缥缈青烟采纳,获得10
14秒前
16秒前
17秒前
烟花应助俞安珊采纳,获得10
18秒前
青q发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
21秒前
研友_VZG7GZ应助zhang采纳,获得10
21秒前
21秒前
21秒前
天天快乐应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
孙燕应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
yydragen应助科研通管家采纳,获得30
22秒前
格局打开发布了新的文献求助10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4032424
求助须知:如何正确求助?哪些是违规求助? 3571005
关于积分的说明 11363157
捐赠科研通 3301345
什么是DOI,文献DOI怎么找? 1817377
邀请新用户注册赠送积分活动 891549
科研通“疑难数据库(出版商)”最低求助积分说明 814300