Deep Reinforcement Learning for Solving the Heterogeneous Capacitated Vehicle Routing Problem

车辆路径问题 计算机科学 强化学习 启发式 选择(遗传算法) 数学优化 节点(物理) 启发式 人工智能 布线(电子设计自动化) 数学 工程类 计算机网络 结构工程 操作系统
作者
Jingwen Li,Yining Ma,Ruize Gao,Zhiguang Cao,Andrew Lim,Wen Song,Jie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (12): 13572-13585 被引量:107
标识
DOI:10.1109/tcyb.2021.3111082
摘要

Existing deep reinforcement learning (DRL)-based methods for solving the capacitated vehicle routing problem (CVRP) intrinsically cope with a homogeneous vehicle fleet, in which the fleet is assumed as repetitions of a single vehicle. Hence, their key to construct a solution solely lies in the selection of the next node (customer) to visit excluding the selection of vehicle. However, vehicles in real-world scenarios are likely to be heterogeneous with different characteristics that affect their capacity (or travel speed), rendering existing DRL methods less effective. In this article, we tackle heterogeneous CVRP (HCVRP), where vehicles are mainly characterized by different capacities. We consider both min-max and min-sum objectives for HCVRP, which aim to minimize the longest or total travel time of the vehicle(s) in the fleet. To solve those problems, we propose a DRL method based on the attention mechanism with a vehicle selection decoder accounting for the heterogeneous fleet constraint and a node selection decoder accounting for the route construction, which learns to construct a solution by automatically selecting both a vehicle and a node for this vehicle at each step. Experimental results based on randomly generated instances show that, with desirable generalization to various problem sizes, our method outperforms the state-of-the-art DRL method and most of the conventional heuristics, and also delivers competitive performance against the state-of-the-art heuristic method, that is, slack induction by string removal. In addition, the results of extended experiments demonstrate that our method is also able to solve CVRPLib instances with satisfactory performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋芷完成签到,获得积分10
刚刚
辛苦梅花候海棠完成签到,获得积分10
1秒前
5秒前
啊啊啊发布了新的文献求助10
9秒前
快乐的睫毛完成签到 ,获得积分10
10秒前
11秒前
科研通AI5应助熊猫侠采纳,获得10
14秒前
迷惘墨香发布了新的文献求助10
15秒前
郑嘻嘻完成签到,获得积分10
15秒前
科研通AI2S应助木染采纳,获得10
16秒前
超帅斑马发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助淡淡夕阳采纳,获得10
18秒前
20秒前
风中梦蕊发布了新的文献求助10
21秒前
熊猫侠发布了新的文献求助10
26秒前
迷惘墨香完成签到,获得积分10
26秒前
搜集达人应助nana采纳,获得10
29秒前
爆米花应助米缸采纳,获得10
31秒前
xiaowang应助啊啊啊采纳,获得10
34秒前
Chief完成签到,获得积分0
35秒前
39秒前
云墨完成签到 ,获得积分10
40秒前
lancer发布了新的文献求助10
41秒前
nana发布了新的文献求助10
43秒前
谢会会完成签到 ,获得积分10
52秒前
nana完成签到,获得积分20
52秒前
chengmin发布了新的文献求助10
57秒前
共享精神应助科研通管家采纳,获得10
59秒前
8R60d8应助科研通管家采纳,获得10
59秒前
赘婿应助科研通管家采纳,获得20
59秒前
1分钟前
SYLH应助科研通管家采纳,获得200
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Rita应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777121
求助须知:如何正确求助?哪些是违规求助? 3322546
关于积分的说明 10210579
捐赠科研通 3037903
什么是DOI,文献DOI怎么找? 1666952
邀请新用户注册赠送积分活动 797871
科研通“疑难数据库(出版商)”最低求助积分说明 758059