Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features

逻辑回归 医学 滤泡性淋巴瘤 梯度升压 淋巴瘤 人工智能 Boosting(机器学习) 正电子发射断层摄影术 核医学 PET-CT 无线电技术 弥漫性大B细胞淋巴瘤 放射科 机器学习 计算机科学 病理 随机森林 内科学
作者
Filipe Montes de Jesus,Yunchao Yin,E. Mantzorou-Kyriaki,Xaver U. Kahle,Robbert J. de Haas,Derya Yakar,Andor W. J. M. Glaudemans,Walter Noordzij,Thomas C. Kwee,Marcel Nijland
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (5): 1535-1543 被引量:22
标识
DOI:10.1007/s00259-021-05626-3
摘要

One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [18F]FDG-PET/CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This study evaluated whether radiomic features extracted from clinical baseline [18F]FDG PET/CT and analyzed by machine learning algorithms may help discriminate FL from DLBCL.Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or DLBCL (n=76) and available [18F]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radiomic features were extracted from the volume of interest on co-registered [18F]FDG PET and CT images. Analysis of selected radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with a SUVmax-based logistic regression model.From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradient Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p≤0.01).Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL tumor lesions, beyond that of the SUVmax alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RGG发布了新的文献求助10
刚刚
刚刚
1秒前
深情安青应助dqw采纳,获得10
1秒前
1秒前
年轻砖头发布了新的文献求助10
2秒前
小肥羊发布了新的文献求助10
3秒前
4秒前
煜琪发布了新的文献求助10
5秒前
guojingjing发布了新的文献求助10
6秒前
7秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
OU应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
13秒前
共享精神应助煜琪采纳,获得10
13秒前
13秒前
14秒前
黄锐完成签到,获得积分10
14秒前
14秒前
nana发布了新的文献求助10
14秒前
ARNI发布了新的文献求助10
16秒前
毛毛er发布了新的文献求助10
17秒前
通通通完成签到,获得积分10
17秒前
英俊的铭应助Liuhuan采纳,获得10
17秒前
17秒前
莫寒兮发布了新的文献求助10
17秒前
CipherSage应助一个大西瓜采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4716335
求助须知:如何正确求助?哪些是违规求助? 4078433
关于积分的说明 12613437
捐赠科研通 3781833
什么是DOI,文献DOI怎么找? 2089064
邀请新用户注册赠送积分活动 1115263
科研通“疑难数据库(出版商)”最低求助积分说明 992404