EEG-Based Emotion Recognition via Neural Architecture Search

计算机科学 人工智能 卷积神经网络 脑电图 人工神经网络 模式识别(心理学) 脑-机接口 唤醒 强化学习 循环神经网络 机器学习 心理学 生物 精神科 神经科学
作者
Chang Li,Zhongzhen Zhang,Rencheng Song,Juan Cheng,Yü Liu,Xun Chen
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (2): 957-968 被引量:40
标识
DOI:10.1109/taffc.2021.3130387
摘要

With the flourishing development of deep learning (DL) and the convolution neural network (CNN), electroencephalogram-based (EEG) emotion recognition is occupying an increasingly crucial part in the field of brain-computer interface (BCI). However, currently employed architectures have mostly been designed manually by human experts, which is a time-consuming and labor-intensive process. In this paper, we proposed a novel neural architecture search (NAS) framework based on reinforcement learning (RL) for EEG-based emotion recognition, which can automatically design network architectures. The proposed NAS mainly contains three parts: search strategy, search space, and evaluation strategy. During the search process, a recurrent network (RNN) controller is used to select the optimal network structure in the search space. We trained the controller with RL to maximize the expected reward of the generated models on a validation set and force parameter sharing among the models. We evaluated the performance of NAS on the DEAP and DREAMER dataset. On the DEAP dataset, the average accuracies reached 97.94%, 97.74%, and 97.82% on arousal, valence, and dominance respectively. On the DREAMER dataset, average accuracies reached 96.62%, 96.29% and 96.61% on arousal, valence, and dominance, respectively. The experimental results demonstrated that the proposed NAS outperforms the state-of-the-art CNN-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Landau完成签到,获得积分10
3秒前
4秒前
5秒前
Z1X2J3Y4完成签到,获得积分0
6秒前
001发布了新的文献求助10
7秒前
张晓天发布了新的文献求助10
8秒前
Panchael完成签到,获得积分10
10秒前
丘比特应助乐观的忘幽采纳,获得10
11秒前
小胖纸完成签到 ,获得积分10
11秒前
HZY发布了新的文献求助10
11秒前
果果完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
wonwojo发布了新的文献求助10
14秒前
学术渣渣完成签到,获得积分10
14秒前
Sky完成签到,获得积分10
17秒前
学术渣渣发布了新的文献求助10
17秒前
xjcy应助可意采纳,获得20
17秒前
科研通AI5应助石金胜采纳,获得10
18秒前
直率冷之发布了新的文献求助10
18秒前
科研民工完成签到,获得积分10
19秒前
TSG3A完成签到,获得积分20
19秒前
酷波er应助001采纳,获得10
20秒前
qiulong发布了新的文献求助10
20秒前
20秒前
JIANG发布了新的文献求助30
22秒前
月儿完成签到,获得积分10
23秒前
Akim应助HZY采纳,获得10
23秒前
diu完成签到,获得积分10
23秒前
CodeCraft应助fox199753206采纳,获得10
25秒前
TSG3A发布了新的文献求助10
26秒前
Preseverance完成签到,获得积分10
26秒前
30秒前
yueyue发布了新的文献求助10
32秒前
32秒前
王翎力完成签到,获得积分10
32秒前
32秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799219
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322248
捐赠科研通 3061362
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806929
科研通“疑难数据库(出版商)”最低求助积分说明 763451