ADAM10型
粘合连接
外域
钙粘蛋白
细胞生物学
足细胞
去整合素
生物
细胞粘附分子
细胞粘附
化学
肾
金属蛋白酶
细胞
内分泌学
基质金属蛋白酶
受体
生物化学
蛋白尿
作者
Marlies Sachs,Sebastian Wetzel,Julia Reichelt,Wiebke Sachs,Lisa Schebsdat,Stephanie Zielinski,Lisa Seipold,Lukas Heintz,Stephan A. Müller,Oliver Kretz,Maja T. Lindenmeyer,Thorsten Wiech,Tobias B. Huber,Renate Lüllmann‐Rauch,Stefan F. Lichtenthaler,Paul Säftig,Catherine Meyer‐Schwesinger
出处
期刊:Journal of The American Society of Nephrology
日期:2021-03-30
卷期号:32 (6): 1389-1408
被引量:17
标识
DOI:10.1681/asn.2020081213
摘要
Podocytes embrace the glomerular capillaries with foot processes, which are interconnected by a specialized adherens junction to ultimately form the filtration barrier. Altered adhesion and loss are common features of podocyte injury, which could be mediated by shedding of cell-adhesion molecules through the regulated activity of cell surface-expressed proteases. A Disintegrin and Metalloproteinase 10 (ADAM10) is such a protease known to mediate ectodomain shedding of adhesion molecules, among others. Here we evaluate the involvement of ADAM10 in the process of antibody-induced podocyte injury.Membrane proteomics, immunoblotting, high-resolution microscopy, and immunogold electron microscopy were used to analyze human and murine podocyte ADAM10 expression in health and kidney injury. The functionality of ADAM10 ectodomain shedding for podocyte development and injury was analyzed, in vitro and in vivo, in the anti-podocyte nephritis (APN) model in podocyte-specific, ADAM10-deficient mice.ADAM10 is selectively localized at foot processes of murine podocytes and its expression is dispensable for podocyte development. Podocyte ADAM10 expression is induced in the setting of antibody-mediated injury in humans and mice. Podocyte ADAM10 deficiency attenuates the clinical course of APN and preserves the morphologic integrity of podocytes, despite subepithelial immune-deposit formation. Functionally, ADAM10-related ectodomain shedding results in cleavage of the cell-adhesion proteins N- and P-cadherin, thus decreasing their injury-related surface levels. This favors podocyte loss and the activation of downstream signaling events through the Wnt signaling pathway in an ADAM10-dependent manner.ADAM10-mediated ectodomain shedding of injury-related cadherins drives podocyte injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI