Topological metasurfaces for symmetry-protected electromagnetic line waves

对称(几何) 物理 拓扑(电路) 超材料 电磁辐射 直线(几何图形) 光学 几何学 数学 电气工程 工程类
作者
Dia’aaldin J. Bisharat,Daniel F. Sievenpiper
标识
DOI:10.1117/12.2529727
摘要

The discovery of topological condensed-matter systems has promoted extensive research on analogous classical photonic systems, motivated by the prospect of backscattering-immune wave propagation. So far, photonic topological insulators have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two-dimensional systems. However, these realizations suffer from bulky structures, intricate design/material requirements, or limited operational bandwidth. Here, we present symmetry-protected topological states akin to quantum spin-Hall and valley-Hall effects by engineering surface modes over open-boundary metallic metasurfaces of infinitesimal thickness. As a result, the proposed structures support robust gapless edge states, which are confined and guided along a one-dimensional line rather than a surface interface. To emulate the spin degree of freedom, we exploit the electromagnetic-duality symmetry by stacking two complementary metasurfaces. Straightforwardly, the modal degeneracies are formed at high-symmetry K/K′ points due to the use of hexagonal unit cells, while the strong effective magneto-electric coupling inherent to the overlapped metasurfaces opens a wide non-trivial bandgap. To emulate the valley degree of freedom, on the other hand, we exploit the mirror symmetry of the structure by reducing the lattice symmetry of the hexagonal cell-based metasurface, which has either inductive or capacitive response, into C3υ point symmetry. Consequently, the degeneracy between the two valleys in reciprocal space is lifted. Owing to the simplicity, compactness, tunability, and openboundary nature of the proposed system, it constitutes an attractive tabletop platform for the study of classical topological phases, as well as for practical applications advancing the potential of photonic topological insulators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真的雨完成签到,获得积分10
6秒前
Luke Gee完成签到 ,获得积分10
6秒前
6秒前
9秒前
10秒前
13秒前
leo发布了新的文献求助10
14秒前
梦华老师发布了新的文献求助10
16秒前
执着烧鹅完成签到 ,获得积分10
18秒前
春春完成签到,获得积分10
20秒前
梦华老师完成签到,获得积分10
23秒前
25秒前
爱吃猫的鱼完成签到,获得积分10
27秒前
wishe完成签到,获得积分10
30秒前
ZYN完成签到,获得积分10
36秒前
40秒前
41秒前
44秒前
leo发布了新的文献求助10
47秒前
邱寒烟aa完成签到 ,获得积分0
51秒前
鳄鱼队长完成签到,获得积分10
52秒前
123完成签到 ,获得积分10
1分钟前
1分钟前
天天开心完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
sun_lin完成签到 ,获得积分10
1分钟前
1分钟前
椒盐皮皮虾完成签到 ,获得积分10
1分钟前
jfw完成签到 ,获得积分10
1分钟前
leo发布了新的文献求助10
1分钟前
qingqingiqng完成签到,获得积分10
1分钟前
1分钟前
石子完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
可耐的寒松完成签到,获得积分10
1分钟前
科研人发布了新的文献求助10
1分钟前
逢场作戱__完成签到 ,获得积分10
1分钟前
mark33442完成签到,获得积分10
1分钟前
懵懂的仙人掌完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060642
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353