材料科学
固态
制冷
激光器
纳米技术
工程物理
热力学
光学
物理
工程类
作者
Xiaojing Xia,Anupum Pant,Abbie S. Ganas,Fedor Jelezko,Peter J. Pauzauskie
标识
DOI:10.1002/adma.201905406
摘要
Abstract Herein, the role that point defects have played over the last two decades in realizing solid‐state laser refrigeration is discussed. A brief introduction to the field of solid‐state laser refrigeration is given with an emphasis on the fundamental physical phenomena and quantized electronic transitions that have made solid‐state laser‐cooling possible. Lanthanide‐based point defects, such as trivalent ytterbium ions (Yb 3+ ), have played a central role in the first demonstrations and subsequent development of advanced materials for solid‐state laser refrigeration. Significant discussion is devoted to the quantum mechanical description of optical transitions in lanthanide ions, and their influence on laser cooling. Transition‐metal point defects have been shown to generate substantial background absorption in ceramic materials, decreasing the overall efficiency of a particular laser refrigeration material. Other potential color centers based on fluoride vacancies with multiple potential charge states are also considered. In conclusion, novel materials for solid‐state laser refrigeration, including color centers in diamond that have recently been proposed to realize the solid‐state laser refrigeration of semiconducting materials, are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI