清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information

磷酸化 苏氨酸 丝氨酸 计算生物学 蛋白质磷酸化 计算机科学 机器学习 人工智能 生物 生物化学 蛋白激酶A
作者
Saeed Ahmed,Muhammad Kabir,Muhammad Arif,Zaheer Ullah Khan,Dong‐Jun Yu
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:612: 113955-113955 被引量:35
标识
DOI:10.1016/j.ab.2020.113955
摘要

Phosphorylation is a ubiquitous type of post-translational modification (PTM) that occurs in both eukaryotic and prokaryotic cells where in a phosphate group binds with amino acid residues. These specific residues, i.e., serine (S), threonine (T), and tyrosine (Y), exhibit diverse functions at the molecular level. Recent studies have determined that some diseases such as cancer, diabetes, and neurodegenerative diseases are caused by abnormal phosphorylation. Based on its potential applications in biological research and drug development, the large-scale identification of phosphorylation sites has attracted interest. Existing wet-lab technologies for targeting phosphorylation sites are overpriced and time consuming. Thus, computational algorithms that can efficiently accelerate the annotation of phosphorylation sites from massive protein sequences are needed. Numerous machine learning-based methods have been implemented for phosphorylation sites prediction. However, despite extensive efforts, existing computational approaches continue to have inadequate performance, particularly in terms of overall ACC, MCC, and AUC. In this paper, we report a novel deep learning-based predictor to overcome these performance hurdles, DeepPPSite, which was constructed using a stacked long short-term memory recurrent network for predicting phosphorylation sites. The proposed technique expediently learns the protein representations from conjoint protein descriptors. The experimental results indicated that our model achieved superior performance on the training dataset for S, T and Y, with MCC values of 0.608, 0.602, and 0.558, respectively, using a 10-fold cross-validation test. We further determined the generalization efficacy of the proposed predictor DeepPPSite by conducting a rigorous independent test. The predictive MCC values were 0.358, 0.356, and 0.350 for the S, T, and Y phosphorylation sites, respectively. Rigorous cross-validation and independent validation tests for the three types of phosphorylation sites demonstrated that the designed DeepPPSite tool significantly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanliulaixi完成签到 ,获得积分10
30秒前
40秒前
花椒泡茶完成签到 ,获得积分10
42秒前
蔡勇强完成签到 ,获得积分10
44秒前
YifanWang应助一个小胖子采纳,获得20
46秒前
一只半夏发布了新的文献求助10
46秒前
我独舞完成签到 ,获得积分10
49秒前
51秒前
刘涵完成签到 ,获得积分10
51秒前
文艺水风完成签到 ,获得积分10
52秒前
53秒前
55秒前
一只半夏完成签到,获得积分10
55秒前
YifanWang应助一个小胖子采纳,获得10
1分钟前
SCI完成签到 ,获得积分10
1分钟前
1分钟前
1234完成签到 ,获得积分10
1分钟前
逸风望完成签到,获得积分10
1分钟前
1分钟前
YifanWang应助一个小胖子采纳,获得10
1分钟前
Yang完成签到 ,获得积分10
1分钟前
1分钟前
心悦臣服发布了新的文献求助10
1分钟前
momoni完成签到 ,获得积分10
1分钟前
YifanWang应助一个小胖子采纳,获得10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
爆米花应助自知则知之采纳,获得10
1分钟前
1分钟前
默默的筝完成签到 ,获得积分10
1分钟前
YifanWang应助一个小胖子采纳,获得10
2分钟前
陈鹿华完成签到 ,获得积分10
2分钟前
2分钟前
haiwei完成签到 ,获得积分10
2分钟前
个性仙人掌完成签到 ,获得积分10
2分钟前
2分钟前
YifanWang应助一个小胖子采纳,获得10
2分钟前
朴实乐天完成签到,获得积分10
2分钟前
2分钟前
加减乘除完成签到 ,获得积分10
2分钟前
自知则知之完成签到,获得积分10
2分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Feminist Explorations of Urban China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372815
关于积分的说明 10475459
捐赠科研通 3092636
什么是DOI,文献DOI怎么找? 1702237
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101