Abstract The introduction of paper-based platforms for developing novel energy storage devices such as supercapacitors (SCs) highlights new promising opportunities in the field of flexible electronics. Herein, the use of paper-based substrate has shown reduced manufacturing cost and simplified coating process by screen-printing technology, as well as an improvement of the multilayer structure adhesion. The SC manufactured with Graphite ink mixed with Carbon Black (CB)/Prussian blue (PB) at different weight ratios (0, 3, 4, 5, 7, and 10 wt %) shows good performances. An optimum weight ratio of carbon black/prussian blue. 4 wt % is consistent with the following features: i) specific capacitance of 253 mF/cm² at 0.01 V/s, ii) specific energy density of 0.5 mWh/cm², iii) specific power density of 0.1 mW/cm², and iv) good cycling stability (94%) after 5000 cycles. The proposed fabrication approach exhibits a simple scale-up, a low environmental impact and a decrease of manufacturing costs: it provides self-supporting electrodes based on a mixture of graphite ink and CB/PB nanocomposite.