清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Making the Most of Your Regret: Workers’ Relocation Decisions in On-Demand Platforms

后悔 重新安置 损失厌恶 激励 业务 利润(经济学) 杠杆(统计) 微观经济学 报童模式 供求关系 经济 营销 计算机科学 供应链 机器学习 程序设计语言
作者
Zhong‐Zhong Jiang,Guangwen Kong,Yinghao Zhang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:23 (3): 695-713 被引量:56
标识
DOI:10.1287/msom.2020.0916
摘要

Problem definition : We have witnessed a rapid rise of on-demand platforms, such as Uber, in the past few years. Although these platforms allow workers to choose their own working hours, they have limited leverage in maintaining availability of workers within a region. As such, platforms often implement various policies, including offering financial incentives and/or communicating customer demand to workers in order to direct more workers to regions with shortage in supply. This research examines how behavioral biases such as regret aversion may influence workers’ relocation decisions and ultimately the system performance. Academic/practical relevance : Studies on on-demand platforms often assume that workers are rational agents who make optimal decisions. Our research investigates workers’ relocation decisions from a behavioral perspective. A deeper understanding of workers’ behavioral biases and their causes will help on-demand platforms design appropriate policies to increase their own profit, worker surplus, and the overall efficiency of matching supply with demand. Methodology : We use a combination of behavioral modeling and controlled laboratory experiments. We develop analytical models that incorporate regret aversion to produce theoretical predictions, which are then tested and verified via a series of controlled laboratory experiments. Results : We find that regret aversion plays an important role in workers’ relocation decisions. Regret-averse workers are more willing to relocate to the supply-shortage zone than rational workers. This increased relocation behavior, however, is not sufficient to translate to a better system performance. Platform interventions, such as demand information sharing and dynamic wage bonus, can help further improve the system. We find that workers’ regret-aversion behavior may lead to an increased profit for the platform, a higher surplus for the workers, and an improved demand-supply matching efficiency, thus benefiting the entire on-demand system. Managerial implications : Our research emphasizes the importance and necessity of incorporating workers’ behavioral biases such as regret aversion into the policy design of on-demand platforms. Policies without considering the behavioral aspect of workers’ decision may lead to lost profit for the platform and reduced welfare for workers and customers, which may ultimately hurt the on-demand business.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追梦少年应助kinmke采纳,获得10
11秒前
xdd完成签到 ,获得积分10
18秒前
23秒前
追梦少年应助kinmke采纳,获得10
29秒前
习月阳完成签到,获得积分10
30秒前
郭俊秀完成签到 ,获得积分10
37秒前
54秒前
kinmke完成签到,获得积分10
56秒前
Orange应助我是笨蛋采纳,获得10
1分钟前
1分钟前
1分钟前
我是笨蛋发布了新的文献求助10
1分钟前
1分钟前
那那发布了新的文献求助10
1分钟前
Jessica发布了新的文献求助30
1分钟前
善学以致用应助那那采纳,获得10
1分钟前
CodeCraft应助迷你的雪瑶采纳,获得10
1分钟前
xhemers发布了新的文献求助10
1分钟前
sowhat完成签到 ,获得积分10
2分钟前
酷炫的咖啡豆应助www采纳,获得10
2分钟前
SCI在向我招手完成签到,获得积分10
2分钟前
2分钟前
2分钟前
那那发布了新的文献求助10
2分钟前
2分钟前
像猫的狗完成签到 ,获得积分10
2分钟前
2分钟前
xhemers完成签到,获得积分10
2分钟前
stan212发布了新的文献求助10
2分钟前
我是笨蛋发布了新的文献求助10
2分钟前
Jessica完成签到 ,获得积分10
2分钟前
李爱国应助那那采纳,获得10
2分钟前
2分钟前
3分钟前
打打应助1123采纳,获得10
3分钟前
3分钟前
3分钟前
飞云完成签到 ,获得积分10
3分钟前
3分钟前
那那发布了新的文献求助10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924372
求助须知:如何正确求助?哪些是违规求助? 3469104
关于积分的说明 10955116
捐赠科研通 3198461
什么是DOI,文献DOI怎么找? 1767207
邀请新用户注册赠送积分活动 856697
科研通“疑难数据库(出版商)”最低求助积分说明 795597