插层(化学)
电化学
氧化物
材料科学
结构稳定性
钨
化学工程
质子
质子输运
储能
化学
无机化学
电极
热力学
膜
物理化学
功率(物理)
工程类
冶金
物理
结构工程
量子力学
生物化学
作者
James B. Mitchell,Natalie R. Geise,Alisa R. Paterson,Naresh C. Osti,Yangyunli Sun,Simon Fleischmann,Rui Zhang,Louis A. Madsen,Michael F. Toney,De‐en Jiang,А. И. Колесников,Eugene Mamontov,Veronica Augustyn
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2019-10-29
卷期号:4 (12): 2805-2812
被引量:113
标识
DOI:10.1021/acsenergylett.9b02040
摘要
There is widespread interest in determining the structural features of redox-active electrochemical energy storage materials that enable simultaneous high power and high energy density. Here, we present the discovery that confined interlayer water in crystalline tungsten oxide hydrates, WO3·nH2O, enables highly reversible proton intercalation at subsecond time scales. By comparing the structural transformation kinetics and confined water dynamics of the hydrates with anhydrous WO3, we determine that the rapid electrochemical proton intercalation is due to the ability of the confined water layers to isolate structural transformations to two dimensions while stabilizing the structure along the third dimension. As a result, these water layers provide both structural flexibility and stability to accommodate intercalation-driven bonding changes. This provides an alternative explanation for the fast energy storage kinetics of materials that incorporate structural water and provides a new strategy for enabling high power and high energy density with redox-active layered materials containing confined fluids.
科研通智能强力驱动
Strongly Powered by AbleSci AI